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Abstract—Mobile authentication is a fundamental factor in the protection of user’s private resources. In recent years, motion
sensor-based biometric authentication has been widely used for privacy-preserving. However, it faces with the problems including low
data collection efficiency, insufficient authentication scenario coverage rate, weak de-noising ability, and poor robustness of models,
rendering existing methods difficult to meet the security, privacy, and usability requirements jointly in the real-world scenario.
To overcome these difficulties, we propose a system called ESPIALCOG, which is able to 1) collect the sensor data embedded in mobile
devices self-adaptively, unobtrusively and efficiently through the evolutionary stable participation game mechanism (ESPGM) with a
high scenario coverage rate, 2) minimize noise from collected data by analyzing three types of abnormalities, and 3) authenticate the
ownership of mobile devices in real-time by adopting optimized LSTM model with an enhanced stochastic gradient descent (SGD)
algorithm. The simulation experiment on 6000 users shows that the efficiency and coverage rates increase dramatically by deploying
our ESPGM. Moreover, we conduct experiments on a large-scale real-world noisy dataset with 1513 users and two other small pure
real-world datasets. The experimental results show the high accuracy and favorable robustness of ESPIALCOG in the noisy
environment.

Index Terms—User Authentication, Mobile Device, Game Theory, Deep Learning.

F

1 INTRODUCTION

R ECENT hardware advances have led to the development
and consumerization of mobile devices. GPU, TPU, and

other chips are increasingly integrated into mobile phones to
meet the growing complex computing demand. Meanwhile,
numerous sensors (acceleration, gyroscope, light, heartbeat
sensors, etc.) are used to complete various practical tasks.
With the coming of 5g Era, a recent global survey by the
world’s leading market researcher (CCS Insight) forecasts
that 0.84 billion 5G-enabled mobile phones will be shipped
in 2022, accounting for 42% of total global shipments [1]. In
order to prevent illegal access to private information stored
in mobile devices, it is urgent to design appropriate and
robust authentication mode to protect users’ information se-
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curity according to the characteristics of hardware/software
and application scenarios of those devices. At present, user
authentication methods on mobile devices can be classified
into three categories: credential-based, static characteristics-
based, and dynamic behavior-based. Traditional credential-
based authentication methods (e.g., text passwords, PIN
codes and patterns, etc.) are widely used to unlock mobile
devices and log in applications. During authentication, users
need to explicitly enter authentication information. Such
methods simply verify that the user has entered the account
credentials correctly, not that the user is trusted. Also, pre-
vious studies show that this kind of authentication method
is easy to be cracked by brute-force attacks [2], touchscreen
smudges [3], shoulder attack [4] and sensor-based inferring
[5]. Compared with credential-based authentication, static
characteristics-based methods are based on user static bio-
metric characteristics such as fingerprint and face, which
can achieve relatively high authentication accuracy. How-
ever, frequent human-computer interaction may bring bad
user experience, and biological content collection may also
arouse users’ concerns about leakage of their private infor-
mation. Moreover, the latest research shows that the misuse
of fingerprint API on Android will make apps vulnerable
to multiple attacks [6], fingerprint recognition systems are
easy to be compromised by image-level MasterPrints [7],
and deep learning-based face recognition systems are also
proven to be bypassed by sophisticated attackers [8, 9].

Considering the weakness of the credential technology-
based and user static characteristics-based authentication,
motion sensor-based dynamic user authentication is pro-
posed by many researchers [10–22]. The motion sensor-
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TABLE 1
Comparison with related studies on smartphone sensor-based authentication. L represents low, M represents medium, and H represents high. NA

represents the information is not mentioned.

Study Efficiency Scenario
coverage

De-noise
ability Robustness AccuracyRequire

user
movement

Device
placement

Authentication
Latency

ESPIALCOG No Dynamic L H H H H
RISKCOG (2019) [10] No Dynamic L M L M H

Derawi et al. (2010) [11] Yes Fixed NA L NA L L
Kwapisz et al. (2010) [12] Yes Fixed NA L NA L M

Ho et al. (2012) [13] Yes Fixed NA L NA L NA
Zhu et al. (2013) [14] No Fixed/Dynamic H L NA L L
Lu et al. (2014) [15] Yes Dynamic M L NA L M

Kayacik et al (2014) [16] Yes Fixed H L NA L M
Ren et al. (2015) [17] Yes Fixed NA L NA L M
Lee et al. (2015) [18] Yes Fixed M L NA L M

Sitová et al. (2016) [19] Yes Fixed M L NA L H
Lee et al. (2017) [20] No Fixed L L NA L M

Buriro et al. (2017) [21] Yes Dynamic NA L NA L H
Shen et al. (2018) [22] Yes Fixed M L NA L H

based mechanisms can be applied to many common sce-
narios. For example, Alice and Bob are classmates. One day,
Alice leaves her smartphone at the desk without turning
off the screen. Thus it is possible for Bob to check Alice’s
WeChat private activities without her consent if WeChat’s
automatic login option is enabled. In this case, sensor-based
authentication approaches which are running in the back-
ground can detect the unauthorized user access implicitly,
and then invoke the follow-up self-defense actions, such
as privately alerting the phone owner of the suspicious
access by email, rendering an empty page or demanding
for retyping the password of Alice’s WeChat. Among all
the existed sensor-based user authentication work, the most
representative one is RISKCOG [10], which overcomes the
shortcomings of previous work and exploits a dynamic
and implicit real-time user authentication method. But the
low data collection efficiency, insufficient authentication
scenario coverage rate, weak de-noising ability, and poor
robustness of models, rendering existing motion sensor-
based authentication methods difficult to meet the security,
privacy, and usability requirements jointly in mobile user
authentication.

To fill this critical research gap, in this paper we design
an effective and accurate sensor-based user authentication
system, called ESPIALCOG1. In Table 1, we list the problems
with previous sensor-based approaches and summarize the
following challenges:
(1) Low data collection efficiency. Motion sensors (in-
cluding accelerometer, gyroscope, and gravity) are widely
embedded in smart-phones as privacy-independent sensors.
However, the traditional way of data collection is to invite a
small number of participants to provide sensor data, users
are required to restart collecting new data of each gait pat-
tern, which wastes human/ material resources and leads to
low collection efficiency [11–13, 15–19, 21, 22]. Furthermore,
in the real complex environment, users are not required to
perform specific behaviors or to fix the location of mobile
phone, but the collecting process is not controllable, and

1. ESPIAL for mobile user Implicit Authentication through Evolu-
tionary Stable Participation game and Lstm. COG for cognition.

the time required to obtain sufficient training data will be
longer [10]. It is crucial to stimulate smart-phone users to
actively participate in sensing processes by contributing
sensing data.
(2) Insufficient authentication scenario coverage rate. Pre-
vious studies [11–13, 16–18] have a strong assumption that
the smart device placement should be fixed (e.g., attached
on the user’s leg). The single device location makes it hard to
cover various authentication status and behavior patterns.
RISKCOG [10] collects data at the start of apps of different
types and has a relatively higher coverage rate of the user’s
behavior patterns. It is still insufficient because RISKCOG
does not consider the user patterns of different applications
in the same type (e.g., for the same type of chat applica-
tions, one may use DingTalk during office hours and use
Instagram at the spare time). Collecting data from different
apps of the same type helps us to model the behavior of
users using mobile devices comprehensively. Therefore, we
need to collect a large amount of sensor data in different
application scenarios to improve model accuracy.
(3) Weak de-noising ability. Considering the low-cost and
portability of mobile devices, the initial reading of their
built-in motion sensors is often influenced by inherent
factors such as materials and workmanship. In addition,
the value of the motion sensor is also affected by external
factors such as temperature, humidity, and age of use, which
make the direct reading of mobile device motion sensor
inaccurate. Then the data deviation will directly lead to
the accuracy of the final authentication. Therefore, the error
correction and de-noising of motion sensor are of great
importance. The noise impact of the hardware is hardly
considered by previous studies [11–22], while the existing
de-noising technique [10] can remove the flat data, it’s still
thought to be one-sided.
(4) Poor robustness of models. On the one hand, the
traditional sequence matching algorithm [11, 17, 20] and
machine learning methods [12, 14–16, 18] are not suitable
for time series data in complex scenarios, and can not take
into account the contextual issues of behavior. On the other
hand, the robustness of existing models is not strong, the
data set might be simulated, and there are problems such
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as no labels, data loss, etc. Although a semi-supervised
online learning algorithm is proposed in [10] to address the
unlabeled data issue, the model should be re-trained when
the new data samples are uploaded, which can introduce a
large number of computing costs.

Compared with the state-of-the-art work RISKCOG [10],
our system has the following advantages. 1) We propose an
evolutionary stable participation game framework to collect
the sensor data embedded in mobile devices self-adaptively,
unobtrusively, and efficiently with a high scenario cover-
age rate. 2) We deploy three methods for data de-noising
to further eliminate the noise impact of the hardware. 3)
We present an optimized LSTM network for data training,
which greatly improved the accuracy and robustness of the
model. Finally, our system can authenticate the user owner
unobtrusively utilizing the well-trained LSTM model. In
summary, we make the following contributions:

• We design a heuristic data collection mechanism
based on participation game theory to reach high
data collection efficiency. Moreover, we propose an
evolutionary stable mechanism to improve the cov-
erage rate of various application scenarios for au-
thentication by collecting 1) data of different types of
applications and 2) data from multiple applications
in the same type.

• Through the study of a large number of motion
sensor data in the real-world scenario, we propose a
data de-noising technique to recognize and remove
data abnormalities such as Equal-Value abnormal-
ities, Jump-Point abnormalities and Zero-Value ab-
normalities .

• We propose an accurate and robust LSTM network
architecture which considers the time series based
contextual issues of user behavior. Moreover, we
implement an enhanced SGD algorithm to minimize
the impact of noisy labels during the training phase
to improve the robustness of the model.

• We achieve high accuracy for implicit user authenti-
cation under the noisy environment. The experimen-
tal results show that ESPIALCOG gains the classifi-
cation accuracy values of 87.00% and 97.93% for the
user owner and others, respectively. Our system can
surpass the existing methods in the efficiency of data
collection, the sufficiency of scenario coverage rate,
the comprehensiveness of de-noising ability and the
robustness of the model.

In practice, ESPIALCOG could be used as a third-party
service to perform implicit authentication firstly. If it fails,
other explicit authentications or effective countermeasures
would be then leveraged. The remainder of this article is
organized as follows: In Section 2, we cover ESPIALCOG
design in detail. Section 3 presents the overall evaluation
of our system. Section 4 discusses the shortcomings of our
work and proposes countermeasures. Section 5 surveys the
relevant work. Section 6 concludes our work.

2 SYSTEM DESIGN

In this section, we first introduce the usage scenario and
overall architecture of our proposed user authentication

mechanism for mobile devices. We then discuss several
important topics in its design, including evolutionary stable
participation mechanism, data de-noising, optimized LSTM,
and user authentication.

2.1 Usage Scenario and System Overview
The usage scenario of ESPIALCOG is as follows.

In the training phase: Alice has deployed ESPIALCOG
on her smartphone. Each time she is opening some applica-
tions (e.g., WeChat, Instagram), motion sensors (including
acceleration sensor, gyroscope sensor, and gravity sensor)
embedded in smartphones will sense and collect her be-
havior related data, and then upload it to cloud servers.
At the same time, she will receive the payoff which is cal-
culated by the payoff function (in Algorithm 1). The payoff
information obtained from both population state and system
average payoff will guide her to decide whether to change
another sensing process (e.g., use game or news related
applications) or keep the current sensing process (e.g., use
chat related applications such as WeChat) by comparison.
Then the uploaded data will be de-noised and normalized
for LSTM model training. Finally, the model on the server
will be pushed to the smartphone when a WiFi connection
is available.

In the authentication phase: Alice has the trained LSTM
model on the smartphone. One day, Alice leaves her smart-
phone at the desk without turning off the screen. Bob finds
the smartphone and tries to check Alice’s WeChat private
activities without her consent. When Bob is opening the
WeChat application, the data of motion sensors will be col-
lected, pre-processed (data de-noising and normalization),
and then fed into the LSTM model to authenticate the
owner. Finally, Bob will be judged as a suspicious user and
ESPIALCOG will invoke the follow-up self-defense actions.

The architecture of our system is illustrated in Figure 1.
We develop a mobile application for the purpose of data
collection, data de-noising, and user authentication. The
application needs to detect the duration that the device is
being actively used because only the sensor readings during
such a duration are effective to represent user’s manner [10].
On the contrary, the computation-intensive tasks such as
ESPGM and optimized LSTM training with enhanced SGD
algorithm are offloaded to cloud servers to conserve the
on-device battery energy and computing power (data de-
noising is also used in the training phase on the server).
Noting that ESPGM is only used in the training phase,
while the authentication is unobtrusive. Moreover, to re-
solve the issue of practicality (e.g., network is unreachable),
we decouple the authentication from the server side. The
generated model will be pushed to the client for real-time
authentication. We will describe the key components in the
following article.

2.2 Data Collection
Mobile devices are equipped with a list of various sensors.
The more sensors and sensory data being used by the
system, the harder the system to be circumvented. How-
ever, this will also increase the chance of genuine device
users being rejected. In addition, the private and sensitive
data collected by sensors and used for authentication may
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Fig. 1. System architecture; including activity-triggered data collection, data de-noising and offline real-time authentication in the client side,
evolutionary stable participation game mechanism, data de-noising and online learning with enhanced SGD algorithm in the server side.

suffer from data disclosure and privacy breach and hence
raise privacy concerns. Therefore, it is considered important
to strike a balance among security, privacy, and usability.
Firstly, the sensors required for authentication should be
widely used in existing mobile devices. The type of sensor
built into a mobile device is affected by factors such as
device manufacturer, price, and population orientation. For
example, the heart rate sensor is more common on person-
ally worn devices such as smartwatches, but is not equipped
on general smartphones. Although kinetic energy collectors
have proven to be a high-precision sensor [23], which can
effectively capture the moment of user’s movement momen-
tum and thus used for user authentication. However, it is
relatively rare in current mobile devices. Common motion
sensors, such as acceleration sensors, gyroscope sensors, and
gravity sensors, have become an integral part of mobile de-
vices. Due to their high sampling rate and low energy con-
sumption, these two motion sensors are widely used to col-
lect daily activity data of users. Secondly, the sensors for au-
thentication should be independent of user privacy. Mobile
devices are generally integrated with sensors such as cam-

eras, microphones, and global positioning systems (GPS).
On Android, privacy-related permissions will be invoked
if the application wants to get the camera/voice/location
information, which undoubtedly renders users worry about
their privacy being leaked. In addition, face information is
easy to be stolen, sound information is easy to be recorded,
and geographic information is easy to be simulated. These
emerging phenomenons make the above-mentioned sensors
also have certain security risks, so this type of sensor is not
considered in this article. Thirdly, the sensors demanded
for authentication should be insensitive to changes in the
external environment. The identity authentication system
expected in this article can work normally in any scenario,
which can meet the new requirements on the selection
of sensors. Those sensors that are easily affected by the
external environment will not be considered in this article.
For example, the sound sensor (microphone) will not be
able to obtain sound information from the user in a noisy
environment. The camera sensor cannot accurately identify
the information of the object that needs to be photographed
in a poor light environment. The capacitive sensor (such as
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some fingerprint sensors) cannot work normally in a humid
environment, and the temperature sensors and magnetic
sensors are greatly affected by external air temperature and
the earth’s magnetic field. Therefore, ESPIALCOG choose
acceleration sensor, gyroscope sensor, and gravity sensor for
data collection and final authentication.

An ideal data collection should be able to collect suf-
ficient data for authentication while consuming minimal
battery power, which calls for a smart data collection design.
Typically, the applications of mobile devices always stay one
of the two states: idle state and active state. Idle state refers
to the situation that the application is suspending in the
background or the user is not performing actions on the
device. An active state refers to the situation that the user
is performing an activity on the device and the application
is running in the foreground. Based on the observation that
the embedded sensors nearly cannot collect data specifically
meaningful for authentication while the application of the
device is in idle states, like the previous work [10], we pro-
pose a smart activity-triggered data collection approach to
achieve the goal of collect effective data with minimal power
consumption. As shown in Figure 1, the core idea is that
sensors will collect data in a low sampling rate for energy
conservation until some events specifically meaningful for
authentication happen. Specifically, when the application of
the device is in the idle state (The screen of the phone is
off or no new applications are running in the foreground),
the data collection process should be suspended and only
periodically query specific sensors for the possible state
change at a quite low rate. Once the application device
becomes active from the idle state (The screen of the phone
is on and a new application is running in the foreground),
the data collection process resumes and collects data with
a relatively high sampling rate. Take the smartphone as
an example. Every time the user has an interaction with
the phone by opening an application, the package name of
the application running in the foreground will be changed,
which is the time for the data collection to resume. Android
allows developers to refresh the sensor data in customized
intervals/delays. Considering the battery consumption, we
empirically set the sampling frequency of 10HZ in idle state
and that of 50HZ in an active state. Moreover, we set the
duration of our data collection time as 3 seconds, which has
been discussed in [10] to be the optimum.

2.3 Evolutionary Stable Participation Game Mecha-
nism

To efficiently collect data that represent user behavior and to
increase data coverage rate in the training phase, firstly, we
present an evolutionary stable participation game mecha-
nism, then apply evolutionary dynamics to provide optimal
strategies for the participants. The system will eventually
reach the evolutionary equilibrium following the evolution-
ary dynamics.

We consider a shared sensing system with a server and
a set of smartphone users U = 1, 2, ..., U . The size of U
depends on the number of users participating in the authen-
tication. The server has a limited predefined set of sensing
processes P = 1, 2, ..., P , each of which contains a series of
tasks aimed at collecting sensor data from different types

Fig. 2. Different application types will have different UI modes.

Fig. 3. Sensing process in our ESPGM, users interact with the cloud
server dynamically.

of applications. Inspired by [10], we consider three different
types of applications (three sensing processes): game, chat,
and news, as shown in Figure 2. Specifically, one task is
collecting sensor data when opening some applications of
one type for n seconds (n = 3 seconds), and one user can
complete each task in a time slot (e.g., if the sensing pro-
cess represents a user interacts with chat applications, the
corresponding tasks contain opening and using Instagram,
Facebook, WeChat, DingTalk, etc).

The specific applications used by users may vary at a
different time (use DingTalk during office hours and use
Wechat in spare time), so the sensing process from an
application of the same type is divided into multiple time
slots to obtain different applications of the same type, which
can make data coverage rate wider. The budget Si for each
type to collect the sensing process is limited [24]. All users
participate in the same sensing process i share Si in the
same time slots.

The process of participatory sensing is described as
follows: One user joins a sensing process and submits its
selection to the server. The user then performs the task of
a sensing process that belongs to a type of applications,
obtains the required sensing data, and sends it to the server.
The server receives sensing data, calculates and sends the
payoff to the user. Noting that one user can only open
one type of application at a time so that only one sensing
process can be added. Each sensing process aims to collect
the motion sensor data when opening the application of the
same type. As shown in Figure 3, we will repeat the sensing
process, including the following three steps for each time
slot:

• Step 1. Collecting sensing data. The user collects
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the sensing data for the sensing process. E.g., when
a user opens WeChat, it means he triggers a chat
sensing process. Meanwhile, ESPIALCOG will collect
sensor data of chat type for 3 seconds.

• Step 2. Sending data and getting payoff. The user
exchanges sensing data, payoff, and other statistics
(the information of the population state and the
system average payoff) with the server. E.g., the
collected data of opening WeChat will be sent to the
server. Then the user will receive the payoff which is
calculated by the payoff functions in Algorithm 1.

• Step 3. Evolving statistics. The user decides whether
to change his statistics or not based on the evolu-
tionary stability participation mechanism. E.g., after
sending sensing data to the server, the user will
obtain the information of the population state and
the system average payoff, which will advise the user
whether to choose another sensing process (game,
news) or stick to the current sensing process (chat).
When the user’s payoff is less than the system aver-
age payoff, the system will generate a random value
A according to a uniform distribution on (0, 1). At the
same time, each user choosing the sensing process
has an evolving probability B to choose other sensing
processes. If A is less then B, our system will advise
the user to choose another sensing process, otherwise
stick to the current sensing process. The user will
learn and improve its strategy over time with the
statistical information provided by the server.

Next, we give the related theorems, including the evo-
lutionary dynamics of the evolutionary stable participation
game, and the evolutionary equilibrium of the evolutionary
stable participation algorithm:
Theorem 1. The evolutionary dynamics of the evolutionary

stable participation game are given as

θ̇i (t) = α

(
Si∑P
i=1 Si

− θi(t)

)
,∀i ∈ P.

where α is the strategy adaptation factor, and Si is the
budget for collecting sensing process of type i, θi(t) is the
proportion of users choosing sensing process i at time t. For
all t , we have

∑
i∈P θi (t) = 1. Theorem 1 is the motivator

for a user to decide its strategy profile when the current
payoff is lower than the system average payoff. Details of
the proof of Theorem 1 is in Appendix A.

According to Theorem 1, we then propose the evolution-
ary equilibrium in Theorem 2.
Theorem 2. The evolutionary stable participation algorithm

converges to an evolutionary equilibrium, and it is glob-
ally asymptotically stable.

θ∗ =

(
θ∗i =

Si∑P
j=1 Sj

)
,∀i ∈ P.

The proof of Theorem 2 is listed in Appendix B. The Evo-
lutionary Stable Strategy (ESS) is an equilibrium refinement
of the Nash Equilibrium, which naturally leads to the idea
of evolutionary equilibrium [25, 26]. We prove that the
ESS in Equation 2 is globally, asymptotically stable. It is

an important characteristics since the evolutionary stable
participation algorithm is thus robust to any degree of
mutations of the users. Theorem 2 implies that the system
eventually evolves to the evolutionary equilibrium θ∗i .

The intuition behind Theorem 1 and Theorem 2. We
discuss two factors that affect a user’s choice in strategy
evolvement. The first factor is the fraction of users par-
ticipating in the sensing process. In the real world, a user
observes the trend and follows it. The second factor is the
“extra percentage of payoff” of a sensing process. It reflects
the appealing of improving the utility of a sensing process.
We assume that the server is responsible for collecting the
statistics and computing the average. A user chooses one
sensing process based on a probability distribution denoted
by the product of the above two factors. At the end of each
time slot, the user receives the payoff from the server, along
with the statistics from the server. Then, the user decides
whether to change his strategy or not. The basic idea is to
let a user choose a better sensing process if his payoff is
lower than the system-wide average payoff. The probability
is based on two factors (i.e., the ”extra percentage of payoff”
of the sensing process, and the fraction of users choosing
the sensing process). Theorem 1 shows the rate of strategy
adaptation is governed by evolutionary dynamics. Theorem
2 implies that the system eventually evolves to the evolu-
tionary equilibrium. The evolutionary stable participation
mechanism converges to the equilibrium such that users
choosing different sensing processes receive the same pay-
off. It is an important characteristic since the evolutionary
stable participation algorithm is thus robust to any degree
of mutations of the users. With the evolutionary stable
participation algorithm, the system can quickly recover from
the mutant states. This demonstrates that the algorithm is
robust to the perturbations of the users. Considering that a
user may change its choosing sensing process by following
the popularity, it is important to ensure the stability of data
collection in the crowdsourced sensing systems.

In reality, users are often bounded rational [24], and they
do not always maximize their interests in the process of
performing tasks, which means that even if the payoff of
each participant is lower than the average, they may stick to
the current strategy without changing the strategy. Accord-
ing to the above assumptions, we use a random probability
parameter of ξ in the algorithm, and the participants will
change the strategy under this certain probability.

The dynamics of user participation in our mechanism
can be described with the evolutionary dynamics in The-
orem 1. Based on it, we propose the evolutionary stable
participation mechanism to guide the users in Algorithm 1.
The mechanism is designed in a distributed and paralleled
manner, and users can evolve their strategy simultaneously
in each time slot. The server confirms the selected sensing
process (i.e., the strategy) of all the users, exchanges sensing
data and payoffs, and provides the necessary statistical
information for the users. Combined with Algorithm 1, the
user will learn and improve its strategy over time with the
statistical information provided by the server.

Our system will converge into an evolutionary equilib-
rium in a short time, which is globally asymptotically stable.
In other words, the data we collect has a high coverage rate:
it not only guarantees the balance of data of different types
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Algorithm 1 Evolutionary Stable Participation Algorithm
Require: The limited set of mobile device users U ,

The limited predefined set of sensing processes P ,
The payoff functions Φu (Su, θ (t)).
Initialization:
Set the global strategy adaptation factor α ∈ (0, 1].
Each user chooses a sensing process randomly.

1: for each user u and each time slot t do
2: in parallel:
3: collect the sensing data required by the sensing pro-

cess Pu.
4: send the collected sensing data to the server and

receive the payoff Φu (Su, θ (t)).
5: receive the information of the population state θ (t)

and the system average payoff Φ̄ (θ (t)).
6: if Si∑P

j=1 Sj
< θi(t) then

7: generate a random value ξ according to a uniform
distribution on (0, 1]).

8: if ξ < α
(

Si∑P
j=1 Sj

− θi(t)
)

then

9: select another sensing progress p
′

with evolving
probability.

10: else
11: stick to the current sensing process.
12: end if
13: end if
14: end for

of applications, but also ensures that there is as much data
of different applications in the same type.

2.4 Data De-noising

In the actual data collection process, there are many uncon-
trollable variables or factors that prevent the device from
being uniformly and effectively calibrated. Therefore, there
may be a certain deviation between the data collected by
directly calling the sensor interface and the actual situation.
It is important for us to de-noise the data with illegal seman-
tics to improve the accuracy of the final model. Generally,
we can divide illegal data semantics into two types: invalid
data and abnormal data.

2.4.1 Invalid data
The first type is invalid data which can not represent the
users’ usage manner, and this part of data is not related
to our authentication. When collecting data in an actual
scenario, it is often impossible to guarantee that a user is
always actually holding the phone during daily usage. For
example, users can place the device on a horizontal desktop
for interactive operations. In this case, even if the two
collection requirements (The screen of the phone is on and a
new application is running in the foreground) mentioned in
Section 2.2 are met, the collected data still cannot effectively
reflect the differences of usage patterns between different
users. We asked 20 participants to handle a phone and put
the phone on a stationary plane. Then we get the bound-
aries of the gravity sensor readings on three dimensions
by minimizing the errors of device placement prediction:
If the readings of gravity sensor meet −1.5 < Xgr(k) < 1.5,

−1.5 < Ygr(k) < 1.5 and 9 < |Zgr(k)| < 10 simultaneously,
we regard it as invalid data and remove. Here, Xgr(k),
Ygr(k) and Zgr(k) represent values of the three axes of the
gravity sensor x, y, and z at time k.

2.4.2 Abnormality
The second type is abnormality caused by abnormal mo-
bile device sensors. Considering the low cost and portable
nature of mobile devices, the readings of its built-in mo-
tion sensors are often affected by inherent factors such as
materials and workmanship. In addition, the value of the
motion sensor is also affected by external factors such as
temperature, humidity, and age of use. These characteristics
cause a certain deviation between the direct reading of
mobile device motion sensors and the accurate value, we
call them abnormalities. The abnormality will directly lead
to the failure of the final authentication. There are three main
types of abnormalities: Equal-Value abnormalities, Jump-
Point abnormalities, and Zero-Value abnormalities. In the
rest of this section, we will give the definition of these three
types of abnormalities and the solution of how to handle
them.
Equal-Value abnormalities. It is based on our observation
that even if the device is not moving, the value collected
from the motion sensor will change slightly between two
adjacent samples when the sampling rate is 50HZ. But in
some cases, low-performance motion sensors will cause
Equal-Value abnormalities. We define it as an Equal-Value
abnormality if two or more consecutive values are equal in
the time series data. The ratio that the sum of the points with
Equal-Value abnormalities (at least 2) E to the total number
of points in the time series data N , called the Equal-Value
abnormalities rate RE . Here, N = 150 because the duration
of data collecting is 3 seconds and the sampling rate is 50HZ.

RE =
E

N
× 100%.

Equal-Value abnormalities belong to machine anoma-
lies and it should be removed. As shown in Figure 4(a),
there are continuous Equal-Value abnormalities on z-axis.
Continuous and constant values will undoubtedly interfere
with the construction of user authentication models. In our
experiment, if the RE is greater than 0.7, we consider the
corresponding time series data as abnormal and remove it.
In Table 2, we list the distribution of 1513 users at different
abnormal percentages. (We will introduce the dataset in
Table 3 in Section 3). For example, the number ’589’ repre-
sents that among the 589 people, the percentage of abnormal
data for each person is between 0 to 10%, which should be
removed.
Jump-Point abnormalities. In the time series data, for any
consecutive 3 points x1, x2 and x3, if: (x2 − x1) (x3 − x2) < 0

|x2 − x1| ≥ a · g
|x3 − x2| ≥ a · g

, a ≥ 10

then we call x2 as a jumping point and this phenomenon as
a Jump-Point abnormality. Here, g represents earth gravity.
The ratio that the sum of the points with Jump-Point abnor-
malities J to the total number of points in the time series
data N , called the Jump-Point abnormalities rate RJ .
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(a) Equal-Value abnormalities (b) Jump-Point abnormalities (c) Zero-Value abnormalities

Fig. 4. Three types of abnormalities: an example.

RJ =
J

N
× 100%.

Jump-Point abnormalities describe the behavior of mo-
bile device users and it should be retained. Through a lot
of observations, we find that when the screen is tapped
or shook, Jump-Point abnormalities will occur. As shown
in Figure 4(b), the Jump-Point abnormalities can effectively
reflect human participation and have a positive effect. How-
ever, there are still many values that do not conform to
common sense. For example, the x-axis of the acceleration
sensor might have reached more than 1 million. For the
statistical characteristics of such data (when a ≥ 10), this
paper normalizes the data set into a fixed space to ensure
consistency of data distribution.
Zero-Value abnormalities. The record of each axis of the
sensor is 0, we call this phenomenon as Zero-Value ab-
normalities, as shown in Figure 4(c). Theoretically, this
phenomenon can only happen when the mobile device is
freely falling. From Figure 4(c), we find that the behavioral
semantics around the Zero-Value abnormality is relatively
continuous. Therefore, we remove the Zero-Value abnor-
mality and stitch the data around it. From Table 2, we
can see that it is similar to the Equal-Value abnormalities,
Zero-Value abnormalities account for a small proportion in
the entire data set. Removing the Zero-Value abnormalities
helps to physically distinguish the states of users and is
beneficial to improve the quality of the data.

2.5 Optimized LSTM with enhanced SGD algorithm

Unlike traditional machine learning methods, the LSTM net-
work is well-suited to learn from time series for the potential
contextual contents. This is one of the main reasons why
LSTM outperforms alternative RNNs and Hidden Markov
Models and other sequence learning methods in numerous
applications [27]. Few works used LSTM for motion sensor-
based user authentication, others such as [28, 29] utilized
LSTM for wearable activity recognition, but the noisy labels
in the complex environment and a large amount of real-
world data were not considered by them. In this section, we
will first introduce the framework of our optimized LSTM
for mobile user authentication, and then we will discuss

several important topics such as training set construction
and enhanced SGD algorithm.

2.5.1 The framework of optimized LSTM
In Figure 5, we present an optimized LSTM framework for
mobile device user authentication. The left side is a standard
LSTM network structure which contains input layer (time
series data), LSTM layer, classification layer, and output
layer. The right side represents our enhanced stochastic gra-
dient descent for our optimized LSTM training, including
clipping, group, robustness factor, and tuning.

2.5.2 Training set
Binary classification is widely used in previous mobile
device user authentication work [10, 21] because it can
recognize the occasional overlapping among different users,
while it can not be well addressed through one-class clas-
sification tasks. We can learn a universal network structure
for all users [30, 31], but the network complexity and com-
putational overhead will increase rapidly, we will discuss
it in Section 4 later. Here, we choose a binary classification,
which can better represent the different mobile device usage
patterns of the device owner and others.

In the training phase, assuming that each user is profiled
by n time series data. For p mobile device users, n×p
samples are used to train the classifier in total. Treat the
dataset of the authorized user as Class 1 and that of other
users as Class 0. If p is large, our training set will be
imbalanced. We adopt the stratified sampling heuristically
to address this problem [32]. Firstly, we need to find a
sort factor S which can mostly represent the characteristics
of a user. With the idea of feature extraction in machine
learning, magnitude is the most important feature for user
authentication [10, 12, 13, 33], we define the sort factor S as
follows:

S =
√
X2
a(k) + Y 2

a (k) + Z2
a(k).

where Xa(k), Ya(k) and Za(k) represent values of the three
axes of the acceleration sensor x, y, and z at time k. Secondly,
we need to construct the training set. For each user, we sort
all n × (p − 1) samples and divide them into 5 equal size
strata. Then, an equal amount of continuous samples are
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TABLE 2
The distribution of 1513 users at different abnormal percentages.

The percentage of abnormal
samples (3 seconds) for each user

0-
10%

10%-
20%

20%-
30%

30%-
40%

40%-
50%

50%-
60%

60%-
70%

70%-
80%

80%-
90%

90%-
100%

Equal-Value abnormalities 589 647 174 36 15 25 10 8 0 9
Jump-Point abnormalities 30 104 231 353 315 220 133 68 37 22
Zero-Value abnormalities 1323 37 25 19 12 14 17 22 22 22

Fig. 5. Framework of optimized LSTM for mobile user authentication, and equipped with an enhanced stochastic gradient descent algorithm.

randomly drawn from each stratum. Noticing that the data
samples from one stratum must be continuous because the
temporal continuity of sensor reading is actually helpful to
depict the authorized owner’s pattern of handling the de-
vice. By doing so, negative samples including in the training
set have better representativeness of the p − 1 users. And
the final model becomes more robust than simple random
sampling. Actually, the ratio of the number of samples by
the owner to that of other users is 1:5, which can be prop-
erly handled by deep learning algorithms. Moreover, for
effective training, the number of positive instances usually
needs to exceed 4,000. The above optimal point is chosen
by conducting an experiment which has been proved in
previous work [10].

2.5.3 Enhanced SGD Algorithm
In a noisy environment, the training set is not always pure.
That means one may get incorrect labels from training set
during the supervised learning. For example, The autho-
rized device owner may share her/his phone to others,
such as friends and family members. We have no idea of
the label ground truth. Incorporating the noisy data into
the LSTM model would affect the classification accuracy. To
deal with this problem, one possible way is to check the
training set and adjust it manually, but this is obviously
unrealistic because the data collection is unobtrusive and
automatically. Therefore, we inspire from previous work
[34] and propose a more sophisticated and robust approach

which aims to reduce the influence of noisy labels during the
training phase, especially in the stochastic gradient descent
(SGD) computation.

Algorithm 2 describes the details of our enhanced
stochastic gradient descent method. We begin the algorithm
with random parameters θ0 and end with outputting the
optimal parameters θT which can minimize the loss function
L(θ). Meanwhile, at each step of the SGD, we firstly calcu-
late the gradient ∇θtL (θt, xi) for a random subset which
contains G samples, we then clip `2 norm after getting the
single gradient, add robustness factors and calculate the
average. Finally, we take a step in the opposite direction
of this average robust gradient. Next, we will describe the
details of the components used in our algorithm.

Noise clipping: To reduce the influence of noisy labels,
Algorithm 2 needs to bound the influence of each individual
samples. To that end, we clip each gradient in `2 norm,
that is, we replace the original gradient vector gt (xi) with
gt (xi) /max

(
1,
‖gt(xi)‖2

C

)
, and C is a clipping threshold

which is used to control the gradient norm bound. After
that, we get a new gradient vector as follows:

gt (xi)← gt (xi) /max

(
1,
‖gt (xi)‖2

C

)
.

From the above equation, we can easily get that if ‖g‖2 ≤ C,
gt (xi) ← gt (xi). But if ‖g‖2 > C, the values of gradient
will be scaled down. As a matter of fact, one can change
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Algorithm 2 Enhanced Stochastic Gradient Descent
Input:
(1) Traning samples {x1, . . . , xN};
(2) Loss function L (θ,xi) = − 1

n

∑n
i=1 yi · log (f (xi, θ));

(3) Learning rate ηt;
(4) Noise scale σ;
(5) Group size G;
(6) Gradient norm bound C;
Initialize θ0 randomly

for t ∈ [T ] do
Select random samples into a group Gt with sampling
probability G/N
Calculate gradient
For each i ∈ Gt, calculate gt (xi)← ∇θtL (θt, xi)
Norm clipping
gt (xi)← gt (xi) /max

(
1,
‖gt(xi)‖2

C

)
Add Robustness factors (Gaussian noise)
g̃t ← 1

G

(∑
i

(
gt (xi) +N

(
0, σ2

t

)))
Gradient Descent
θt+1 ← θt − ηtg̃t

end for
Output:
The final parameters θT .

the hyper-parameter C intelligently to correct the biased
gradient direction.

Multi-layer parameters: In Algorithm 2, all the param-
eters in the deep neuron network are grouped into a single
input θ, where θ = {w1, w2, · · · , b1, b2, · · · }, w represents
the weight and b represents the bias. Considering multi-
layer neural networks, we deal with each layer separately.
That is to say, one can customize the gradient norm bound
C and noise scale σ in each layer. Also, in a more so-
phisticated way, the gradient norm bound and noise scale
will dynamically change as the number of epochs increases.
In our experiment, we use a constant setting for these
two parameters because the performance and robustness
of the deep learning model are good enough by using our
proposed method.

Groups: Recall that in our noisy data clipping, Algo-
rithm 2 calculates the gradient of the loss function L(θ) by
computing the gradient of the loss on a group of samples
and taking the average. To further eliminate the effects of
noisy labels, we introduce a new concept called group.
We know that in deep learning, batch is a common way
to prevent local minimum, while group consists of several
batches. To reduce memory consumption, we set the batch
size much smaller than the group size G, which is a hyper-
parameter in our algorithm. We perform the computation in
batches, then put several batches into a group for revising
the gradient. As a matter of fact, the construction of batches
and group is done by randomly shuffling the samples for
efficiency. For ease of analysis, however, we assume that
each group is formed by independently picking each sample
with probability q = G/N , where N is the size of the input
dataset.

Robustness factors: There is a long tradition of adding
random weight noise in classical neural networks, and it
has been under-explored in the optimization of modern

deep architectures. We inspire from previous work [35]
and consider a simple technique of adding time-dependent
Gaussian noise to the gradient at each training step t:

g̃t ←
1

L

(∑
i

(
gt (xi) +N

(
0, σ2

t

)))
.

Existing work [36] has indicated that adding annealed
Gaussian noise by decaying the variance works better than
using fixed Gaussian noise. We use the following schedule
for most of our experiments:

σ2
t =

α

(1 + t)γ
,

where α is selected from {0.01, 0.3, 1.0} and γ = 0.55. If
the gradient noise at the beginning of training is high, the
gradient can be away from 0 in the early stages.

2.5.4 Tuning in Noisy Environment
In order to balance the robustness, accuracy, and overall
performance of our approach for multiple complex tasks,
we tune the hyper-parameters in a noisy environment. Es-
pecially, in our experiments, we find that the accuracy of the
deep learning model is more sensitive to the training hyper-
parameters such as group size, learning rate, and dropout
ratio. The experimental results will be discussed in Sec. 3.

2.5.5 Decision
Given a testing sample (time series data for 3 seconds), the
trained classifier outputs the probability whether the owner
is using the phone p, which is used to get the binary decision
d as

d =

{
1, if p > θ

0, else.

Here, θ is the decision threshold from 0 to 1.

3 EVALUATION

In our evaluation, we define the data collected in the experi-
mental environment as pure and the data collected from the
sophisticated environment will have noisy labels. We totally
have three datasets, as shown in Table 3.

The composition and distribution of our dataset are
the same as our previous work [10]. For the experimental
data without noisy labels, we asked 20 participants to use
the same phone for two weeks. Each participant generates
9240 effective samples to represent his/her usage manner
(dataset I). For each user, we split the data samples into
the training set and the test set. The ratio of the number
of samples in the training set to that in the test set is 4:1
(the training data come from an earlier time than the testing
data). In the training set, the ratio of the number of samples
from the owner to that of other users is 1:5. The test set
follows the same distribution. Moreover, we were able to
obtain a labeled dataset provided by a big Internet company
for our benchmarking and enhanced SGD algorithm test.
That dataset was generated by 34 participants from the iOS
platform (iPhone 7) (dataset II). Our third dataset is a large-
scale raw dataset without ground truth, which was directly
collected from the product by another Internet company
with millions of users. All volunteers are employees within
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Fig. 6. Performance of ESPGM on 6000 users, the efficiency of data collection and the coverage rate of application scenario improve greatly.

TABLE 3
The details of our datasets; all participants were skilled smartphone users with at least two years’ experience; NL for Noisy Label.

Dataset Participants Age Provider Devices and Vendors Duration NL
Dataset I 20 individuals 20 - 60 Our laboratory Samsung N9100 from Samsung Inc. 14 days No
Dataset II 34 individuals 20 - 60 Internet company I iPhone 7 from Apple Inc. 10 days No
Dataset III 1513 individuals 20 - 60 Internet company II Mi 3, Mi 4 and Redmi Note2 from Xiaomi Inc. 10 days Yes

the company. For ethical considerations, we include the
purpose of data collection in the user agreement. All the
participants were informed of this study and they were
given the option to opt in or opt out. Finally we collect data
from 1,513 different users for 10 days (dataset III). For all
the above datasets, the collection frequency is 50Hz. Each
data collection phase lasts 3 seconds. IMEI is used as the
user identifier.

To evaluate the model for user authentication, we define
the following metrics:
True positive (TP): The authorized owner is correctly iden-
tified.
False positive (FP): Other users are incorrectly identified as
the authorized owner.
False negative (FN): The authorized owner is incorrectly
identified as other users.
True negative (TN): Other users are correctly identified.
Performance: The performance contains true positive rate
TPR = TP/(TP + FN), true negative rate TNR =
TN/(TN + FP ) and overall accuracy Accuracy = (TP +
TN)/(TP + FP + FN + TN).
Overhead: Time latency of training of each user on the
server side is to show our strengths compared with the state-
of-the-art solutions.

3.1 Performance of ESPGM

In this section, we conduct simulations to evaluate the
performance of our evolutionary stable participation game
mechanism.

Assuming that there is a participatory sensing system
withN users and P sensing processes, we setN = 6000 and
P = 3 in our experiment. Noting that the proposed game
model and mechanism can handle a much larger number of
sensing processes. In our scenario, we have 3 sensing pro-
cesses which have been described in Section 2. We assume

each sensing process m have a budget Bm = 200m for each
time slot. At the start time, each user n randomly selects a
sensing process p ∈ P . In each time slot, a user collects the
required sensing data, exchanges the data and the payoff
with the server, and then decides whether to change its strat-
egy or not based on the proposed mechanism. We choose the
strategy adaptation factor α = 0.5 as the previous work [24]
did. Also, we assume there are 25 different applications in
one sensing process.

The simulation results are shown in Figure 6. From
Figrue 6(a), we can see that by deploying ESPGM, our
system can collect much more data in the same amount
of time. In the first week, the number of data samples can
reach 40000 with ESPGM, which is seven times as many
as that without ESPGM. After two weeks, the number of
data samples can reach 150000 with ESPGM while that
of data samples without ESPGM is only 12000. Similarly,
we can find that the coverage rate of users using different
applications from the same type is also greatly improved
in Figure 6(b). By deploying ESPGM, the coverage rate will
reach 100% after five days. While the coverage rate is only
80% after two weeks without ESPGM.

3.2 Performance on Noisy Dataset

In this section, we experiment to pick up the best parameters
of our LSTM network. Moreover, we compare our method
with the state-of-the-art work to show the overall perfor-
mance of ESPIALCOG.

3.2.1 Parameter Optimization
Our LSTM network structure refers to the famous work
in human activity recognition [37], due to the universality
of the network structure in similar tasks [30], we reuse its
number of layers (layer = 2) and the number of neurons
per layer (neuron = 32). In order to balance the robustness,
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(a) Learning rate (b) Group size (c) Dropout ratio

Fig. 7. Model accuracy v.s. learning rate, group size and dropout ratio.

TABLE 4
The performance of ESPIALCOG compared with RISKCOG [10] on our

Dataset III.

Studies State TPR TNR

RISKCOG Steady 73.28% 98.43%
Moving 81.41% 98.89%

ESPIALCOG
Not

distinguish 87.00% 97.93%

accuracy, and overall performance of our approach for
multiple complex tasks, we tune the hyper-parameters in
noisy environments based on the initial parameters in [37].
Especially, in our experiments, we find that the accuracy
of deep learning model is more sensitive to the training
hyper-parameters such as learning rate ηt, group sizeG, and
dropout ratio ε. Other parameters, such as noise scale σ and
gradient norm bound C, we use constant setting empirically
which have been explained in Section 2.5.3.

We conduct the grid search to find the optimal config-
uration of the parameters ηt, G and ε in the 2-layer LSTM
network structure, where the parameter ηt determines how
fast the loss function changes, G is used to reduce the local
minimum and revise the gradient, and ε is used to prevent
the deep learning model from over-fitting. Especially, due to
the group size G, we use mini-batch in our experiment.
Learning rate. If the learning rate is set too large, the
model will fail to converge. Otherwise, the loss function
may be trapped into a local minimum. We adjusted the
learning rate ηt over a coarse range. The train accuracy, test
owner accuracy (TPR), and test other accuracy (TNR) under
different learning rates are shown in Figure 7(a). We change
the range of the learning rate is from 0 to 1, the step size is
0.01. After comparison, we can find that the range of 0 to
0.01 performs better. We repeat the above procedure and set
the step size 0.0005. Finally, we choose ηt = 0.0025.
Group size. Since we use mini-batch in our experiment, the
value of group can refer to the original batch size. Generally
using a power of 2 as the batch/group size can effectively
use computing resources. When ηt = 0.0025, we choose the
value of group size from 8, 16, 32, 64, 128, and 256. The
train accuracy, TPR, and TNR under different group sizes
are shown in Figure 7(b). We finally choose G = 16.
Dropout ratio. When ηt = 0.0025 and G = 16, we change

the range of the dropout ratio from 0 to 1, the step size is 0.1.
The train accuracy, TPR and TNR under different dropout
ratio are shown in Figure 7(c). We finally choose ε = 0.8.

3.2.2 Accuracy in Noisy Dataset
By deploying the best hyper-parameters, we achieve high
accuracy on the large-scale dataset (Dataset III) from 1513
people. The final results are shown in Figure 8. In particular,
the average values of training accuracy, TPR, and TNR are
88.50%, 87.00%, and 97.93%, respectively. The results show
that ESPIALCOG can identify non-owner users accurately
(low false positive) with relatively stable availability (low
false negative). As we know, false positive and false negative
are mutually restrictive, decrease one of them may lead to
the increment of another. In mobile device user authentica-
tion, we always pay attention to the sensitive information of
the device owner will not be stolen by others, the low false
positive rate can meet this kind of demand.

We also summarize the performance of ESPIALCOG com-
pared with the state-of-the-art work RISKCOG [10] on our
Dataset III. As shown in Table 4, we can see that the TPR of
our system is much higher than RISKCOG while the TNR
is basically unchanged compared with RISKCOG. Note that
RISKCOG used the SVM classifier and divided the motion
state into steady state and moving state, but the TPR of both
two motion states is worse than ours. The main reasons are
that our context-based deep learning model is more suitable
for this type of time series data collected from motion
sensors, and our data de-noising method brings in a more
clear dataset. Another reason is that we use an enhanced
SGD algorithm which will be evaluated and discussed in
Section 3.3.

3.3 Performance of Enhanced SGD Algorithm
In this section, we conduct the experiment by adding noisy
labels to the pure dataset to prove that our enhanced SGD
algorithm is highly robust in the noisy environment.

We test the accuracy of our enhanced SGD algorithm
on Dataset I and Dataset II which have been described
in Table 3. In the experiment, the network structure is a
2-layer LSTM network structure. The non-linear activation
we used was ReLU and we used dropout with parameter
0.8. We trained the network using the Adam optimizer

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 02,2021 at 09:19:11 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3012491, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. YY, MONTH 2020 13

TABLE 5
The overall accuracy of enhanced SGD algorithm compared with other related work on Dataset I and Dataset II. There are three different status:

Original training data without any noise, training data with 10% noise and training data with 20% noise. The test data did not contain any noisy
labels.

Studies Dataset I Dataset II
Original data 10% noise 20% noise Original data 10% noise 20% noise

Baseline [37] 91.37% 88.74% 86.33% 94.39% 91.02% 90.35%
Semi-supervised learning [10] 90.23% 90.28% 88.78% 94.02% 93.35% 91.61%

Enhanced SGD algorithm 91.59% 91.07% 89.93% 94.51% 93.78% 92.14%

Fig. 8. The overall performamce of ESPIALCOG on our Dataset III.

[38] with default parameters. Regarding the configuration
of ESPIALCOG, we set the learning rate ηt as 0.0025, noise
scale σ as 0.01, group size G as 16 and gradient norm bound
C as 100. These settings were kept fixed for all the experi-
ments described below (except the semi-supervised learning
algorithm [10]). We generated noisy data from clean data
by randomly changing some of the labels followed by the
existing work [34]. We converted each label with probability
p to a different label according to a predefined permutation.
The labels of the test data will not change anymore in
order to validate and compare our method to the regular
approach.

In our evaluations, we totally use three different meth-
ods (include our enhanced SGD algorithm). The baseline
method is the 2-layer LSTM network structure described
above [37]. We also compare our enhanced SGD algorithm
with state-of-the-art solutions in the area of dealing with
noisy labels, RISKCOG [10]. The results of totally test accu-
racy on Dataset I and Dataset II are shown in Table 5.

From Table 5 we can see that the LSTM-based methods
except semi-supervised learning perform well by deploying
the original training data. The reason is that the traditional
machine learning-based classifier (SVM) can hardly handle
the time series data, the contextual relationships contained
in the data are not well extracted. In the 10% and 20% noise
case, the weakness of the baseline LSTM method appears
because there is no additional way for it to fight noisy
labels. All in all, in the 10% noise and 20% noise case, our
enhanced SGD algorithm works better and better along with
the training epochs though it fluctuates and finally achieves

TABLE 6
Average training latency; Iterations represent the number of average
times needed to reach convergence; results are based on the data

from 1,513 users (Dataset III).

Studies Training
for once Iterations

Training
until

convergence
Semi-supervised

learning [10] 102.74s 100 10274s

Enhanced SGD
algorithm 3.13s 1500 4695s

the higher accuracy over other state-of-the-art methods.

3.4 Overhead
In this section, we first calculate the latency of the training
phase by deploying different algorithms on the server. Then
we measure the overhead on the client side.

3.4.1 Overhead on The Server
We set up the experiment on a server with an Intel Xeon
E5 CPU and 64G memory running on Ubuntu 16.04 and
the latency results of ESPIALCOG compared with the semi-
supervised learning presented in [10] are listed in Table 6.
On the one hand, for each training procedure, the average
training latency for our enhanced SGD algorithm is 3.13s
with CPU acceleration. If we use a GPU, we are optimistic
that the training time for each training epoch will be within
1 second. While for semi-supervised learning proposed
in [10], the average latency of each training procedure is
102.74s. On the other hand, the number of average times
needed to reach convergence for these two methods is dif-
ferent, the enhanced SGD algorithm requires more average
iterations (about 1500), but it has better performance on the
average time for each user’s model to reach convergence.

3.4.2 Overhead on The Client
On the client side, Tensorflow2 is deployed on Android to
finish the authentication task. We utilize the famous An-
droid performance test tool Emmagee3 to monitor battery
consumption, CPU, and memory usage. Table 7 shows the
results. For the battery consumption, we let one participant
use the client app for three hours, which includes both data
collection and offline authentication. The battery required
by our application in one hour is less than 0.4%. The
CPU and memory usage during offline authentication on
three different smartphones is a bit more than that during
offline authentication. This is logical because additional

2. Tensorflow. https://www.tensorflow.org/guide/saved model
3. Emmagee. https://github.com/NetEase/Emmagee
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TABLE 7
The overhead results on three different smartphones; the measurement of battery consumption lasts three hours.

Data Collection Offline Authentication
Phone Type Battery Consumption (mAh) CPU (%) Memory (MB) CPU (%) Memory (MB)

Samsung S20 105.3/4000 1.4 13.9 7.9 65.0
Vivo Xplay6 102.0/4080 2.3 14.5 6.5 50.2

MI8 114.1/3400 1.6 14.4 7.0 87.1

TABLE 8
Latency of offline authentication.

Procedure Time (ms)
Data collection 3124.6

Data preprocessing 13.8
Decision 17.3

Overall 3155.7

computational tasks are generated when performing real-
time authentication.

We also check the latency of offline authentication. We
execute the procedures: data collection, data preprocessing
(data de-noising and normalization), and decision for 1000
times on Vivo Xplay6, and record the average time for
each step. The results are listed in Table 8. We can see the
whole process can be finished within 3155.7 ms. The latency
introduced by steps other than data collection is negligible.
All in all, the client’s overhead can fully meet the needs of
real-world usage.

3.5 Resistance to Mimicry Attack
The safety of the sensor-based gait authentication has al-
ways been concerned by the industry community and the
academic community. Some researches [39–41] have ana-
lyzed its ability to resist attacks, in which the majority
is mimicry attack. For the mimicry attack, the attackers
observe the user’s usage manner and mimic the authentic
user’s gesture and operation.

To launch the mimicry attack, for the 20 individuals
(the same individuals in Dataset I in our laboratory), we
select the victim in turn: we first select one individual as the
victim and one classifier is trained for the authorized device
owner by fingerprinting the usage manner (Dataset I, each
victim has 9240 samples for model training), then we asked
the remaining 19 individuals to imitate the victim’s pattern
one by one (100 times for each person, and a participant
generates 30 samples each time). Those samples are checked
against the classifier, and we identify the percentage of
samples which are correctly labeled as other users. Finally,
ESPIALCOG blocks the attacks by imitation with probabil-
ity over 98.40%, and this number is even higher than the
TNR (97.93% in Table 4) of ESPIALCOG on the large dataset.
One possible reason is that the contextual contents (e.g., the
inherent usage pattern for the user owner) of the time series
data were considered via the LSTM model, which is hard
to be bypassed via imitation. Previous works [39–41] also
raised the similar results.

4 DISCUSSION

In this section, we discuss the strengths and weaknesses of
ESPIALCOG, and how to improve in future work.

4.1 The Strengths of ESPIALCOG

Here, we discuss the strengths of our system from the
following three aspects:
High data collection efficiency and sufficient scenario
coverage rate. The proposed participation game theory
can stimulate smart-phone users to actively participate in
sensing processes by contributing sensing data. The data
collecting process is controllable and the time required to
obtain sufficient training data is much less than RISKCOG.
Moreover, we propose an evolutionary stable mechanism to
improve the coverage rate of various application scenarios
for authentication, which is not well addressed in [10]. As
shown in Figure 6, the efficiency of data collection and the
coverage rate of application scenario improve greatly by
deploying ESPGM.
Strong de-noise ability. We deploy three methods for data
de-noising to further eliminate the noise impact of the hard-
ware. The noise impact of the hardware is hardly considered
by previous studies [11–22], while the existing de-noising
technique [10] can remove the flat data, it’s still thought to
be one-sided. Table 2 shows all three abnormalities which
were not well addressed by [10].
Good robustness and high accuracy. We propose an op-
timized LSTM method to solve the contextual issues of
user behavior based on time series. Also, by deploying our
enhanced SGD algorithm, the optimized LSTM can learn
from data that has been diluted by a large amount of label
noise. Table 4 and Table 5 show the overall performance
of ESPIALCOG and the performance of Enhanced SGD
Algorithm compared with [10], respectively. Although the
accuracy results seem only marginally better than other
solutions, the potential improvements are obvious. Firstly,
a semi-supervised online learning algorithm is proposed
in [10] to address the noisy label issue, the model should
be re-trained when the new data samples are uploaded,
which can introduce a large number of computing costs.
The LSTM in our system can learn incrementally with new
group (Section 3.2.1). Secondly, we can see that the TPR of
our system is much higher than RISKCOG while the TNR
is basically unchanged compared with RISKCOG, which
greatly improve the usability of our system.

4.2 The Weaknesses of ESPIALCOG and Future Work

Firstly, we only theoretically prove that the evolutionary
stable game mechanism stimulates user participation and
thus greatly improves the efficiency of sensor data collec-
tion. At the same time, the coverage rate of different apps is
increased by setting incentives for different apps in advance.
Because of the marginal effect, users’ decisions also depend
on other smartphone users. Although the user’s decision
theoretically comes from the algorithm calculation of the
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server, the user’s decision will change with the influence of
the environment due to the randomness in the wild. In the
future, we will optimize the game method and consider the
mutation factors in practical application.

Secondly, the training phase of our system has redun-
dancy. That is to say, once a new user participates in, a new
model must be retrained from a set of random parameters
like the previous work [10], and it is a waste of time. In
the future, we would like to utilize transfer learning to
improve training efficiency. E.g., train a transferable deep
neural network structure similar to ImageNet [31] on an
existing large-scale data set.

5 RELATED WORK

In this section, we review notable efforts done to mobile user
authentication and compare with them in data collection
efficiency, scenario coverage rate, de-noising ability, robust-
ness of models to highlight the novelty of our approaches.
We design a heuristic data collection mechanism based
on participation game theory to reach high data collection
efficiency. To the best of our knowledge, the traditional way
for collecting data is to invite fixed participants to provide
sensor data under some specific scenarios, such as walking
[11–13, 15, 17, 18], going up/down stairs [12], picking up
mobile devices [14, 20] and touching the screen of mobile
devices [19, 21, 22]. In their experiments, the complicated
collection process will be repeated once a new user joins,
which makes it unrealistic in the real-world scenario. Zhu
et al. [10] investigated the usage manner of different people
and proposed an unobtrusive and passive data collection
mechanism in the wild to provide large-scale data. How-
ever, users have different habits/frequencies of using their
mobile devices, i.e., some people may play with their smart-
phones several hours in one day, while some only check the
smartphone less than one hour in one week. For the latter,
it takes a long time to get a sufficient amount of effective
training data. Given the rare limitations on the efficiency of
data collection, ESPIALCOG proposed a heuristic data col-
lection incentive mechanism to stimulate smartphone users
to actively participate in sensing processes by contributing
sensing data. In a word, our system can ensure that all users
provide a sufficient amount of data in a short period of time.
We propose an evolutionary stable mechanism to im-
prove the coverage rate of various application scenarios
for authentication, and it finally converges to an evolu-
tionary equilibrium. Collecting data from motion sensor
for user authentication has been exploited by many re-
searchers. Derawi et al. [11] and Kwapisz et al. [12] made use
of phone-based acceleration sensor to authenticate device
users. Ren et al. [17] devised a user verification system
leveraging the unique gait pattern derived from acceleration
sensors to detect possible user spoofing in the mobile health
care system. These approaches require that the devices are
placed in specified body locations (e.g., bind the device to
the hip). The single device location makes it hard to cover
various authentication status and behavior patterns. Zhu et
al. [10] developed a system called RISKCOG, which could
collect data at the start of apps of different types and had a
relatively higher coverage rate of user’s behavior patterns. It
is still insufficient because RISKCOG does not consider the

user patterns of different applications under the same type
(e.g., for the same type of chat applications, one may use
DingTalk during office hours and use Instagram at spare
time). Consider that the user’s pattern dramatically varies
with different types of applications, we need to collect a
large amount of sensor data under different application
scenarios to increase the authentication accuracy. In this
article, we propose an evolutionary stable mechanism to
improve the coverage rate of various application scenarios
for authentication by collecting 1) data from different types
of applications and 2) data from multiple applications under
the same type.
We present a data de-noising method to remove Equal-
Value abnormalities, Jump-Point abnormalities and Zero-
Value abnormalities in the real-world scenario. Most of
the previous user authentication studies [11–22] considered
motion sensors ideally error-free during data collection and
they had never took the noise impact of the hardware into
account, which would lead to the difficulty in fitting the
model and affect the prediction accuracy. Zhu et al. [10]
observed that the flat data was ineffective to reflect the dif-
ference among various users’ patterns in the data collection
stage and removed them, but the analysis on the availability
of the collected data was missed. Dey et al. [42] and Das et
al. [43] utilized the hardware differences in motion sensor to
fingerprinter mobile devices and the abnormalities in sensor
readings are still not discussed. We analyze a lot of real data
from 1,513 users and propose the data de-noising technique
to remove the invalid data abnormalities such as Equal-
Value abnormalities, Jump-Point abnormalities and Zero-
Value abnormalities.
We implement an optimized LSTM method for time series
data and propose an enhanced stochastic gradient descent
(SGD) algorithm to improve the robustness of model
against the noisy labels in the sophisticated environment.
To the best of our knowledge, most of the existing work [11–
14, 16–22] constantly collected sensory data and established
corresponding models to authenticate users, they could not
deal with the unlabeled data (noisy labels) in real-world
environment. Lu et al. [15] handled the unlabeled data
with an unsupervised learning algorithm which introduced
high time latency. Moreover, the parameter adjustment of
unsupervised clustering algorithm needs to take a great
cost, and the generalization ability of parameters remains
to be verified. Zhu et al. [10] designed a semi-supervised
online learning algorithm with high accuracy and low la-
tency to deal with the unlabeled data in a more sophisticated
environment. However, the classification method used by
them (binary-class SVM) is not suitable for time series data
in complex scenarios, and it also cannot take into account
the context of user behavior. Compared with the above
work, we propose an optimized LSTM method to solve the
contextual issues of user behavior based on time series.

To address the noisy label problem, several studies
have investigated the impact of noisy labels on machine
learning classifiers. Approaches to learn from noisy labels
can generally be categorized into two groups: In the first
group, existing approaches aim to propose noise elimination
algorithms to get a clean dataset in the data pre-processing
phase. Methods in this group frequently face the challenge
of disambiguating between mislabeled and hard training
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samples. In order to overcome this difficulty, people often
use semi-supervised approaches by combining noisy data
with a small set of clean labels [44]. Some approaches
use unsupervised learning [45] and self-supervised learning
[46, 47] to throw the noisy data aside. In the second group,
existing methods propose some noise-robust algorithms to
learn directly from noisy labels in the training phase [48–
51]. Therein, the newest and representative approach is
Pumpout [48]. Pumpout is aim to squeeze out the nega-
tive effects of noisy labels actively from the model being
trained, instead of passively forgetting these effects. The
realization of Pumpout is to train deep neural networks by
stochastic gradient descent ”fiting” labels, while train deep
neural networks by scaled stochastic gradient ascent on
”not-fitting” labels. Since the pattern which Pumpout uses
is single, this method is hard to be controlled and adjusted
in the real-world scenario. In order to reduce the impact
of noisy labels during training, we designed an enhanced
SGD algorithm, which greatly improved the robustness of
the model. Our work differs from these approaches in that
we not only consider the final accuracy, but also the intrinsic
mechanisms and the scalability of the network structure. We
study the behavior of standard neural network training pro-
cedures in settings with different proportions of label noise.
By deploying our enhanced SGD algorithm, the optimized
LSTM can learn from data that has been diluted by a large
amount of label noise.

All in all, ESPIALCOG is able to improve the data col-
lection efficiency, scenario coverage rate, de-noising ability
and robustness of models for motion sensor-based authen-
tication greatly, and it outperforms all the related methods.

6 CONCLUSION

In this paper, we present the system ESPIALCOG to authen-
ticate the mobile device owner through optimized LSTM
with an enhanced stochastic gradient descent algorithm.
Regarding the issue of privacy-preserving in the context
of social impact, our collected data only involves the in-
sensitive motion sensors, which are commonly available on
current devices.

Unlike previous studies with the problems of low data
collection efficiency, insufficient authentication scenario cov-
erage rate, weak de-noising ability and poor robustness of
models, our system can collect the sensor data embedded in
mobile devices self-adaptively, unobtrusively and efficiently
through the Evolutionary Stable Participation Game mecha-
nism with high scenario coverage rate, minimize noise from
collected data by analyzing and removing three types of
abnormalities, authenticate the ownership of mobile devices
by adopting optimized LSTM model in real-time. The ex-
periment of adding noise labels to pure data proves that our
enhanced SGD algorithm is highly robust even in a noisy
environment, and the experimental results on the large-scale
dataset show that our system gains the classification accu-
racy values of 87.00% and 97.93% for the user owner and
others, respectively. It can meet the security, privacy, and
usability requirements jointly in mobile user authentication
and surpass the state-of-the-art work.
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[19] Z. Sitová, J. Šeděnka, Q. Yang, G. Peng, G. Zhou,
P. Gasti, and K. S. Balagani, “Hmog: New behavioral
biometric features for continuous authentication of
smartphone users,” IEEE TIFS, vol. 11, no. 5, pp. 877–
892, 2016.

[20] W.-H. Lee, X. Liu, Y. Shen, H. Jin, and R. B. Lee, “Secure
pick up: Implicit authentication when you start using
the smartphone,” in Proc. ACM SACMAT, 2017, pp. 67–
78.

[21] A. Buriro, B. Crispo, and Y. Zhauniarovich, “Please
hold on: Unobtrusive user authentication using smart-
phone’s built-in sensors,” in Proc. IEEE ISBA, 2017, pp.
1–8.

[22] C. Shen, Y. Li, Y. Chen, X. Guan, and R. A. Maxion,
“Performance analysis of multi-motion sensor behav-
ior for active smartphone authentication,” IEEE TIFS,
vol. 13, no. 1, pp. 48–62, 2018.

[23] W. Xu, G. Lan, Q. Lin, S. Khalifa, N. Bergmann,
M. Hassan, and W. Hu, “Keh-gait: Towards a mobile
healthcare user authentication system by kinetic energy
harvesting.” in NDSS, 2017.

[24] Z. Weng, Q. Chen, and Y. Sun, “Evolutionary stable
participation game of smartphones in crowdsourced
sensing,” International Journal of Distributed Sensor Net-
works, vol. 12, no. 9, p. 1550147716665516, 2016.

[25] J. M. Smith, Evolution and the Theory of Games. Cam-
bridge university press, 1982.

[26] K. S. Narendra and A. M. Annaswamy, Stable adaptive
systems. Courier Corporation, 2012.

[27] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning
to forget: Continual prediction with lstm,” 1999.
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