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Abstract—Recent hardware advances have led to the development and consumerization of mobile devices, which mainly include

smartphones and various wearable devices. To protect the privacy of users, various user authentication mechanisms have been

proposed. In particular, biometrics has been widely used for multi-factor authentication. However, biometrics-based authentication

mechanisms usually require costly sensors deployed on devices, and rely on explicit user input and Internet connection for performing

user authentication. In this article, we propose a system, called RISKCOG, which can authenticate the ownership of mobile devices

unobtrusively and in a real-time manner by adopting a learning-based approach. Unlike previous studies on user authentication, for

cross-platform deployment, maximum user privacy protection, and unobtrusive authentication, RISKCOG only relies on those widely

available and privacy-insensitive motion sensors to capture the data related to the users’ daily device usage. It requires no users’

explicit input and has no requirement on the users’ motion state or the device placement. RISKCOG is also usable in the environment

without Internet access by performing offline user identity verification. We conduct comprehensive experiments on smartphones and

smartwatches, which show that RISKCOG can authenticate device users rapidly and with high accuracy.

Index Terms—User authentication, implicit authentication, mobile device, user privacy
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1 INTRODUCTION

AS one important application of mobile devices, mobile
payments are gaining acceptance among consumers,

and the popularity is expected to boom within the next cou-
ple of years. A recent global survey by the United Nations
Conference on Trade and Development (UNCTD) forecasts
that up to 50 percent of consumers in major markets will be
using a combination of smartphones and wearables to make
payments by 2019 [1]. Wearable payment has come to real-
ity. In the city of Hangzhou in China, where the recent G20
Summit was held, people used their smartwatches to pay
for public transportation.

Although mobile payments have benefited users
immensely, they also introduce several security risks, which
can be classified into two categories: data-driven and human-
driven. Data-driven risks are usually caused by leaking
sensitive credit card data on smartphones through attack
vectors including client side (mobile malware) [2], network
channel (man-in-the-middle attack) [3], as well as server

side [4]. Human-driven risks, on the other hand, arise when
parties other than the owner have access to themobile device
and utilize the payment functions for their own benefit.
According to the report by LexisNexis [5], among 16 percent
of merchants accepting mobile payments in 2016, mobile
transactions accounted for 26 percent of their total transac-
tion volume, and up to 33 percent of those transaction
volumewas contributed by fraudulent transactions.

There exist lots of research work [18], [19], [20], [21] on
solving data-driven risks. However, human-driven risks still
lack effective countermeasures. Typical traditional user
authentication mechanisms only verify if a user knows the
account credential already created at the start of using the ser-
vice. Moreover, most of those authentication systems are
login credential-based, which require explicit user actions,
e.g., account/password input. Previous studies show that
explicit PIN/pattern passcodes can be stolen by touchscreen
smudges [22], shoulder attack [23] and sensor-based inferring
[24]. Later on, learning-based user identification approaches
were proposed [25]. They construct a model to describe
the usage pattern of the authorized phone owner, such as
the locations he/she frequently visits [26], [27], keystroke
dynamics [28], [29], finger movements [30], voice and face
snapshots [31], [32]. Compared with login credential-based
mechanisms, learning-based user identification mechanisms
utilize a diverse set of features from various sensors to verify
user’s identity, and are much harder to get bypassed. More-
over, the learning-based mechanisms can be applied to the
scenario of mobile payment. Suppose Alice and Bob are col-
leagues. Alice leaves her phone at the desk without turning
off the screen. Thus it is possible for Bob to checkAlice’s Face-
book private activities without her consent, if the Facebook
app’s automatic login option is enabled. In this case,
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learning-based authentication approaches which are running
in the background can detect the unauthorized user access
implicitly, and then invoke the follow-up self-defense
actions, such as privately alerting the phone owner of the sus-
picious access by email, rendering an empty page or demand-
ing for retyping the password of Alice’s Facebook.

In this article, we aim to develop a biometrics-based user
authentication system, called RISKCOG, at the device level
that requires no developer support. This system allows the
detection results to be reused and removes the redundancy
in terms of the data collected from each individual app. In
our threat model, each smartphone has a unique owner,
and attackers attempt to access the phone illegally. Our
system assumes that only the several widely used motion
sensors are available on the device, which will be detailed
in Section 3.2. In Table 1, we list the problems with previ-
ous learning-based approaches and summarize the follow-
ing challenges:

(1) Lack of Features. Although a mobile device supports
numerous sensors, which can be potentially used to finger-
print users, the fragmentation issue [33] hinders it from being
deployed widely. Many sophisticated sensors are not avail-
able on some low-end devices. Moreover, some sensors have
to be integrated into an app to work, e.g., the pressure sensor,
which needs to be bound to a view element within an app. A
device level protection requires not to have dependency on
those sensors. Additionally, any feature involving user’s pri-
vate information is also not suitable for the sake of privacy.

(2) Data Availability & Dynamic Device Placement. Only
those data collected during daily usage is usable because
fingerprinting a user fundamentally depends on the user’s
specific pattern of handling the phone. Some smartphone
users might use the phone rarely, or prefer to keep the
phone on a stationary plane. In this case, when we try to col-
lect training data, there will be enough motion events to be
used for representing the authorized owner.

Previous studies [6], [7], [8], [11], [12], [13] have a strong
assumption that the smart device placement should be
fixed, e.g., in the trouser pocket. Sitov�a et al. [14], Buriro
et al. [16] and Shen et al. [17] combine motion sensors and
touchscreen for active smartphone authentication, but the
getting the data from touchscreen needs additional permis-
sions on Android. Zhu et al. [9] proposed a similar method

to ours, which aims to construct the gesture model of how a
user uses the device. The difference is that their work
requires the test phase of dynamic device placement to last
24 hours, which makes the real-time detection unpractical.
Also, when the body placement (and orientation) of the sen-
sor is not fixed, the accuracy of their system will greatly
degrade. Buriro et al. [16] tried to authenticate different
users based on the micro-movements after an unlock event
occurs on the smartphone. However, the authors failed to
measure the latency on the server side and also did not pro-
pose an offline verification model in their work. Research
[15] authenticates different users utilizing users’ phone
pick-up movements, but it only considers the pick-up sig-
nals starting from a stable state. To offer a full verification,
we should not have any requirements for the device place-
ment or user’s motion state. Moreover, the app-specific pat-
tern will challenge the classification accuracy. The user’s
pattern dramatically varies with different types of apps,
e.g., the frequent typing gestures in a chatting app versus
the rotation in a race car game.

(3) Imbalanced Dataset. When identifying the authorized
device owner, we label the data of the authorized user as 1
and that of other users as 0. The binary classification task is
imbalanced, since the number of positive examples is much
less than that of negative examples. The imbalance ratio in
our work increases with the scale of users.

(4) Unlabeled Data. The proposed prototype systems [6],
[7], [8], [11], [12], [13] introduce supervised learning algo-
rithms for the well-labeled training set. For example, the data
in the training set iswell labeled onwhether each data sample
is generated when the authorized user is using the device. In
[15], Lee et al. feed the labeled data to a weighted multi-
dimensional DTW algorithm. However, the well-labeled
data is not always available in the practical scenarios. One
possible case is that the device owner may give the mobile
device to her/his familymember during data collection.

(5) Constrained Mobile Environment. The remote server
may become unaccessible in the disconnected/weakly con-
nected environment, which renders the client-server model
infeasible, given our aim of performing user authentication
in real-time. In addition, a complicated classification model
with high prediction accuracy requires heavy computation
resource, and thus it is not applicable to the constrained

TABLE 1
Comparison with Related Studies on Smartphone Sensor-Based Authentication

Study Require user
movement

Fixed/dynamic
device placement

Scale
(#Users)

Require
label

Offline real-time
verification (Latency)

Accuracy

RISKCOG No Dynamic > 1,500 No 3237.7 ms �95%
Derawi et al. (2010) [6] Yes Fixed < 100 Yes NA EER = 20%
Kwapisz et al. (2010) [7] Yes Fixed < 50 Yes NA �90%
Ho et al. (2012) [8] Yes Fixed < 50 Yes NA -
Zhu et al. (2013) [9] No Fixed/Dynamic < 50 Yes 24 hours < 80%
Lu et al. (2014) [10] Yes Dynamic < 150 No 27864 ms EER = 14%
Kayacik et al. (2014) [11] Yes Fixed < 10 Yes 122000 ms 53% - 99%
Ren et al. (2015) [12] Yes Fixed < 50 Yes NA �90%
Lee et al. (2015) [13] Yes Fixed < 10 Yes 20000 ms �90%
Sitov�a et al. (2016) [14] Yes Fixed < 100 Yes 20000 ms EER = 7%
Lee et al. (2017) [15] No Fixed < 50 Yes 4000 ms 73% - 96%
Buriro et al. (2017) [16] Yes Dynamic < 50 Yes NA EER = 4%
Shen et al. (2018) [17] Yes Fixed < 150 Yes 8000 ms EER = 5%
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mobile devices. Offline verification seems promising in the
case of disconnected Internet access. However, existing
works have their limitations. The complex gait analysis pro-
posed in [10] and [11] has high latency; and the work [9]
cannot support real-time authentication well.

We design a system, called RISKCOG, to provide the off-
line unobtrusive user identity verification service. It is based
on our semi-supervised learning algorithm to identify the
device owner. Each data sample is collected, preprocessed,
and finally aggregated into users’ implicit events (i.e.,
steady state and moving state when using the smartphone,
raising hands to check the time on the watch). Multiple par-
allel classifiers are trained for these events, which are used
to predict whether the authorized device owner is using the
device. Our system can be deployed in three modes based
on the placement of our verification module (i.e., whether
the module performing user authentication is deployed
on the client side or on the server side), shown in Fig. 1. In
the first mode of our user authentication framework, both
the training and verification modules are deployed on the
server side. In the second one, the verification module is
migrated to the local client to deal with the disconnected
environment. In the third mode, the verification module
also resides on the local client while we have a different
goal, which is to scale the system towards massive end
users. In summary, we made the following contributions:

� We develop an unobtrusive user authentication sys-
tem, which authenticates mobile device users in real-
time, simply based on users’ natural usage of mobile
devices, and without any kinds of user interaction.

Our system has achieved a good balance among
security, privacy and usability.

� We compute and finally select 56 features to gener-
ally identify the mobile device owner, by only
involving motion sensors. Moreover, the feature set
does not involve any in-app invocation or user pri-
vacy tracking. It is independent of user’s motion
state and device placement.

� We design a data collection mechanism to resolve the
data availability issue with a 99.9 percent coverage
rate of users’ patterns, which cognitively recognizes
device usage events and completely captures all the
data helpful in fingerprinting usage pattern. The data
that is generated when the device is put on a plane or
that has the dependency on the app-specific pattern
is not adopted and filtered out. We implement a pre-
processing procedure that guarantees the usability of
our systemwith dynamic device placement.

� We develop a stratified sampling method to resolve
the issue of imbalanced dataset in learning-based user
identification. Our sampling method maintains the
temporal continuity of sensor reading and improves
the representativeness of the negative samples.

� We design a semi-supervised online learning algo-
rithm, where the classifier is trained incrementally
with the data collected in chunks. It eliminates the
high time latency when handling unlabeled data
with unsupervised methods. By checking the consis-
tency among the data sent to server incrementally,
we can filter out the part that is not coherent with
the authorized owner’s fingerprint.

� Wedevelop an unobtrusive user identificationmecha-
nism with cross-platform capability. We decouple the
verification from the server side and resolve the issue
of availability. Our optimization produces a light-
weighted identity verification service on resource-
constrained mobile devices, including smartphone
and smartwatch. It only takes 3237.7 ms to finish the
verification on smartphone.

We achieve high accuracy for unobtrusive user identifica-
tion with wild data from a commercialized mobile payment
app developed by one Internet giant company in the world.
RISKCOG achieves the classification accuracy values of 93.77
and 95.57 percent for the steady/moving states on smart-
phone, respectively. RISKCOG can also effectively defend
against brute-force attacks and mimicry attacks. In practice,
RISKCOG could be used as a third-party service to perform
implicit authentication first. If it fails, other explicit authentica-
tions or effective countermeasures would be then leveraged.
RISKCOG can be utilized as an implicit authentication system
on any privacy-sensitive applications with a 99.9 percent
coverage rate of users’ patterns and can reduce the number
of times a user has to do explicit authentication by at least
73.2 percent. We release two Android apps1 and an iOS app2

which implement our user identificationmechanism.

Fig. 1. Three deployment modes of our system RISKCOG.

1. RISKCOG Android app.
http://list.zju.edu.cn/SensorDemo-release.apk,
http://list.zju.edu.cn/app-authentication.apk.
2. RISKCOG iOS app.
http://list.zju.edu.cn/riskcog-ios.zip.
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The remainder of this article is organized as follows.
Section 2 presents brief background knowledge. In Section 3,
we cover RISKCOG design in detail, which is then followed
by an illustration of the implementation procedures in
Section 4. Section 5 presents the overall evaluation of our
system. Section 6 discusses the possibility of an attacker
evading our authentication system. Section 7 surveys the
relevant work. Section 8 concludes our work.

2 BACKGROUND

2.1 Credential-Based Authentication and Learning-
Based Authentication

Authentication is used to prevent the unauthorized parties
from using sensitive services. Currently, the credential is the
predominant form of an authentication system. It is known
to have many security problems. It can only verify if a user
knows the credential but cannot recognize whether she/he
is the real owner of the device. The credential-based authen-
tication is also vulnerable to dictionary attacks. A recent
report about data breaches [34] shows that 4.1 percent of
users choose “123456” as their passwords, and 79.9 percent
of apps still accept weak (lower-case only letters) passwords.
Florencio et al. [35] even found that a single password is typi-
cally used to access over five sites. Moreover, the credential-
based authentication cannot enforce full protection and
achieve usability at the same time. A fully on-demand verifi-
cation requires a user’s explicit input action every time the
user tries to access the sensitive services. While, if the user
enables the automatic login, out of the concern of usability,
the identity will be verified only once.

Considering the security issues of the traditional login
credential-based authentication, learning-based approaches
are introduced for user identification. Such approaches are
able to exactly profile the authorized device owner by a
diverse set of features. At the time of verification, the system
will predict the probability that the user who attempts to
access the service is the owner of the device by checking the
collected test samples against the trained model or the
stored template. It is much harder for attackers to bypass

the verification compared with the traditional authentica-
tion mechanisms, given the difficulty of mimicking a legiti-
mate user’s patterns. Moreover, it requires no explicit
actions from the user, which can enforce the on-demand
protection without sacrificing the usability.

2.2 User Privacy Preserving

The privacy preserving property of RISKCOG is defined in the
context of social impact. Previous studies have already veri-
fied the feasibility of fingerprinting mobile devices with
motion sensors [36], [37]. However, device tracking does
not imply the identity of its owner in social life. Our system
can only provide the knowledge about the mapping
between a trained model and an authorized device owner.
However, it is unable to further figure out who the device
owner is. Compared with the motion sensor data, other
types of features involved are more sensitive. It is straight-
forward to know who the user is when face recognition is
utilized for the purpose of authentication [38], [39]. As for
geo-location, it is able to identify the owner in the physical
world as stated in previous studies [27], [40].

2.3 Platform Porting & Sensor Availability

Our user identification mechanism is built based on the data
collected from three motion sensors, including the accelera-
tion sensor, gyroscope sensor, and gravity sensor. We stud-
ied the prevalence of those three sensors on 20 types of
popular smart mobile devices, which are from 7 major
mobile device vendors and have high market penetration.
Table 2 provides the detailed results. It shows that the three
motion sensors are available on all those smart devices,
except ont device type, i.e., Samsung Galaxy CORE Prime,
released in 2014. Thus, RISKCOG can be easily migrated to
various mobile platforms.

3 SYSTEM DESIGN

In this section, we first introduce the overall architecture of
our proposed user authentication mechanism for mobile
devices. We then discuss several important topics in its
design, including sensor selection, data collection, data pre-
processing, feature selection, semi-supervised online learn-
ing and user authentication.

3.1 System Overview

The architecture of our system is illustrated in Fig. 2. This
framework comprises a platform of wearable devices,
smartphones and online servers. To authenticate a user,
selected sensors, which are embedded in wearable devices
and smartphones, sense and collect user behavior related
data periodically. Smartphones connect to cloud servers via
WiFi or cellular links, and send the collected sensory data to
the latter. Most of wearable devices currently cannot
directly connect to Internet but are expected to have the
Internet access capability very soon in the near future [41].
Now they need to first connect to a network proxy (e.g., a
smartphone) via Bluetooth, which receives the sensory data
and uploads it to cloud servers. The servers in the cloud
perform a series of computing tasks including raw signal
data preprocessing, feature extraction, and finally training
classifier models and applying them to make authentication

TABLE 2
Availability of Acceleration Sensor (AC), Gyroscope Sensor

(GY), Gravity Sensor (GR), and MS for Marketshare

Brand MS in Q4, 2017 Device AC GY GR

Apple 18.6% iPhone X @ @ @
iPhone 8(s) @ @ @
iPhone 7(s) @ @ @
Apple Watch @ @ @

Samsung 17.9% Galaxy S8 @ @ @
Galaxy S7 @ @ @

Galaxy Note 2(3, 4) @ @ @
Galaxy CORE Prime @ � �

Huawei 9.9% P10 @ @ @

OPPO 7.7% R11 @ @ @

Xiaomi 7.5% MI 3(4, 5) @ @ @

vivo 5.9% Xplay6 @ @ @

LG 3.3% G5 @ @ @
Gear Watch @ @ @
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decision. Moreover, the data preprocessing module and fea-
ture extraction module are located in both cloud server and
smartphone. Note that the classifier models are periodically
updated with new sensory data received from endpoint
devices. Our system will train two separated authentication
models from both smartphone and smartwatch. The gener-
ated model will be pushed to the client. In particular, the
model of smartwatch will be stored in the paired smart-
phone for further authentication. In this architecture, wear-
able and smartphone devices are only responsible for
simple data collection and calculation; the computation-
intensive tasks such as semi-supervised online learning are
offloaded to cloud servers to conserve the on-device battery
energy and computing power. Considering the main idea of
authenticating the owners of smartwatches and smart-
phones in our system is fundamentally the same, we will
focus on smartphones to tell how our system works in the
remaining sections. Next, we describe the key components
in the architecture in detail.

3.2 Sensor Selection

Wearable and smartphone devices are equipped with vari-
ous sensors to capture kinds of information to enable ample
smart functions. Since there are a mass of sensors embedded
in mobile devices, we only select the sensors which satisfy
the following three characteristics.

First, the sensors should be widely available. Two devi-
ces could differ in the number and type of embedded sen-
sors no matter whether they belong to the same category,
such as smart watches and smart wristbands. To design an
authentication system generally used for wearable and
smartphone devices, first we select the sensors widely

available. Inertial sensors, such as accelerometer and gyro-
scope, are becoming essential parts of various mobile and
wearable platforms. They have high sampling rate capabil-
ity with low cost to capture users’ activity [42], and are thus
selected. Second, sensors need to be privacy-insensitive
since the data collected by them does not contain personally
identifiable information (PII). Sensors including camera,
microphone, and GPS are also available or about to come
popular in many wearable devices, but we do not consider
such sensors in our design since they could capture users’
face, voice and locations visited, which are typically consid-
ered quite privacy-sensitive. In addition, we will not con-
sider touch screen because it can not only capture users’
fingerprints but also record the contextual information
about users’ touch behavior on the devices. Finally, the
characteristic of being environment-insensitive is urgently
needed. The desired authentication system is expected to
work across all environments. Thus the sensors with their
performance easily affected by environment factors are not
considered either. Examples of such sensors are voice sen-
sors in the noise background, cameras in the row lighting
condition, and capacitive sensors in the humidity weather.
Therefore, our system RISKCOG collects data from the acceler-
ation sensor, gyroscope sensor and gravity sensor on smart devi-
ces. Acceleration sensor and gravity sensor are used to
remove the noise data and recognize different motion states,
while acceleration sensor and gyroscope sensor are used for
our authentication.

3.3 Data Collection and Preprocssing

Each sensor reading includes values corresponding to the x,
y, and z axes

Fig. 2. System architecture; training phase starts at data collection from motion sensors and ends when the classification model is pushed to the
device followed by the local identify verification.

470 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 02,2021 at 09:20:11 UTC from IEEE Xplore.  Restrictions apply. 



fXaðkÞ; YaðkÞ; ZaðkÞg;
fXgyðkÞ; YgyðkÞ; ZgyðkÞg;
fXgrðkÞ; YgrðkÞ; ZgrðkÞg:

Here, the parameter k represents the kth sensor reading in
the time dimension. Take Android as an example. Android
provides a class SensorManager [43], which allows devel-
opers to refresh the sensor data in both fixed and custom-
ized intervals/delays after registering the sensors with
registerlistener(). There are four delays:

� SENSOR DELAY FASTEST ¼ 0s:
� SENSOR DELAY GAME ¼ 0:02sð50 HZÞ:
� SENSOR DELAY NORMAL ¼ 0:06s:
� SENSOR DELAY UI ¼ 0:2s:
Since both SENSOR DELAY FASTEST and SENSOR

DELAY GAME can provide sufficient data within a short
time. Consider the battery consumption, we choose
SENSOR DELAY GAME for our data collection. Different
phones have different factory settings for their internal sen-
sors, which thus generate quite different readings for the
same gesture. We asked the individuals to put the device on a
stationary plane to calibrate motion sensors before they ran
RISKCOG. Note that the sensor readings may drift in a long
period. On one hand, the sensor drift depends on the type of
hardware (i.e., MEMS). In our experiment, we assume the
other factors, such as the usage period and temperature, have
theminimal influence on data collection. On the other hand, if
some false negatives (i.e., the authorized owner is incorrectly
identified as other users) occurred frequently even after a
long period (about 6months according to our experience), the
userwould be suggested to calibrate the error once again.

We develop a mobile application for the purpose of data
collection. The app needs to detect the duration when the
device is being actively used, because only the sensor read-
ings during such a duration are effective to represent user’s
manner. With our experiment results shown in Fig. 3, we
observe that the sensor readings largely vary with different
types of apps even for the same user, which will affect the
classification accuracy of the trained model. For example,
the following three kinds of apps can demonstrate that the
same user adopt different user gestures when playing dif-
ferent apps. A user rotates the phone when playing a race
car game, which is mainly driven by the acceleration sensor
only; a chatting app will generate a lot of typing gestures;
comparatively, a news app usually generates balanced

sensor readings. However, we also observe that the sensor
readings are relatively consistent during the start of an app,
i.e., the loading phase. After a large amount of observations,
we found the duration of the loading phase lasted for 2 to 4
seconds. The choice of the duration is based on sensitivity
analysis. We found that when the time was smaller than 3
seconds, the final accuracy increases as the time increases.
While when the time was larger than 3 seconds, the final
accuracy decreases as the time increases. Finally we chose 3
seconds as our duration for data collection.

Take Android as an example, we have a BroadcastRe-

ceiver to capture the system event where the screen of a
device is turned on, and then it starts a Service [44] that
periodically queries the current app in the foreground.
When the currently active app is different from the one in
the last query, we will recognize that a new app has been
started. The data collection will keep running for 3 seconds
if both of the two conditions are satisfied:

� The screen of the phone is on.
� A new application is running in the foreground.
So, the data is only collected during the active daily

usage. The application-specific pattern is filtered, since our
goal is to develop a device-level authentication system,
rather than an app-specific one. The sensory data from other
sensors except the three motion sensors is also filtered.

Our preprocess includes the data calibration and motion
state recognition. A user may not actually hold the phone
during daily usage. We did observe that a portion of data is
ineffective to reflect the difference among various users’
patterns, even if we apply the two conditions above in the
data collection stage. Our data calibration phase has the fol-
lowing condition regarding the gravity sensor values in
three dimensions, and it allows RISKCOG to remove the data
in those situations, such as keeping the device flat on a
desk. We asked 20 participants to handle a phone and put
the phone on a stationary plane. Then we get the boundaries
of the gravity sensor readings on three dimensions by mini-
mizing the errors of device placement prediction

f�1:5 < XgrðkÞ < 1:5g
\ f�1:5 < YgrðkÞ < 1:5g
\ f9 < jZgrðkÞj < 10g:

After removing the data samples that are ineffective to rep-
resent the pattern of device owner, we project those sensor

Fig. 3. Acceleration sensor values in the temporal dimension. The sensor readings largely vary with different types of apps even for the same user,
but they are relatively consistent during the start of an app.
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readings to our global coordinate system, which allows RISK-

COG to be insensitive to device orientation. We identify the
gravity direction based on the values from the gravity sen-
sor, whose opposite direction will be set as the z-axis in the
global coordinate system. It is thus straightforward to
decide the directions of x-axis and y-axis by Fleming’s
right-hand rule [45].

The sensor reading in the moving state largely differs
from that in the steady state. In this paper, we define that
the steady state means the smartphone is used in sitting,
standing and some other stable scenarios, while the moving
state represents that one uses the smartphone in walking,
riding and other changing scenarios. If we use one classifier
for all the motion states, there will be a huge inconsistency
within the data samples of one user, which will further
affect the classification accuracy. Therefore, a classifier is
trained for each state of a user.

We observe that the difference between the values of
acceleration sensor and those of gravity sensor, termed as
D-value, in the moving state, has a higher amplitude com-
pared to the D-value in the steady state. We define the kth
D-values on three dimensions as

XdðkÞ ¼ jXaðkÞ �XgrðkÞj;
YdðkÞ ¼ jYaðkÞ � YgrðkÞj;
ZdðkÞ ¼ jZaðkÞ � ZgrðkÞj:

We calculate the median values ~XdðkÞ, ~YdðkÞ, and ~ZdðkÞ
on three dimensions in the data collection duration. With a
predefined threshold, the user’s motion state is determined
as steady given the condition

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~XdðkÞ2 þ ~YdðkÞ2 þ ~ZdðkÞ2

q
< d:

Actually, D-value reflects the degree of the movement of the
body. As shown in Fig. 4, if a smartphone is hold in a steady
state (such as sitting and standing), the D-value would be
small (around to 0) because the reading of acceleration sen-
sor and gravity sensor would be the same. But in a moving
state (such as walking and riding), the absolute D-value
would be large because the movement of the body is
intense. Especially, if the smartphone moves in a uniform
speed (such as sitting in a car that moves at a constant
speed, relatively static), it still can be considered as a steady
state because there is no explicit movement of the body.
Our system can recognize different states automatically and
generate the corresponding classifiers. We found the value
of d ranging from 0 to 0.4 in steady state and ranging from

0.6 to more in moving state. We set the value of d as 0.5
based on our experiment results.

3.4 Feature Generation and Selection

For the classification, we only utilize the data collected from
acceleration and gyroscope sensors. Since standard classifi-
cation methods cannot be directly applied to time-series
data, we first extract the feature vectors from the raw time
series data. To fulfill this, we divide the raw time series data
into 0.2-second segments and extract features based on the
10 sensor readings within each segment. We denote the ith
value of the feature vector as F i ¼ fF1i; F2i; . . . ; Fpig, which
includes p features. In order to maintain the consistency
among feature vectors in the temporal domain, we utilize
sliding window design with 50 percent overlapping
between each pair of neighbor segments, i.e.,

fXaðkÞ; YaðkÞ; ZaðkÞ; XgyðkÞ; YgyðkÞ; ZgyðkÞg10k¼1 ) F 1:

fXaðkÞ; YaðkÞ; ZaðkÞ; XgyðkÞ; YgyðkÞ; ZgyðkÞg15k¼6 ) F 2:

� � �
In our experiment, if the length of slidingwindow is too long,
it will result in a loss of accuracy. Meanwhile, if the length is
too short, it’s time-consuming to process the raw data.

We used a public feature extraction library LibXtract [46]
to extract 20 common features, which cover multiple
moments and other commonly used statistical properties of
the distribution. To select the effective features, we com-
puted the Fisher Score [47] of the extracted features to fur-
ther evaluate the discriminative power given the ground
truth in the laboratory settings (see details in Table 5,
dataset I). The correlation between the Fisher Score and the
feature’s impact on the RISKCOG classification accuracy
(the average value on steady state and moving state) for all
the features is shown as Fig. 5. If the corresponding feature
has no discriminative power among users, then the Fisher
Score will be close to zero and the classification average
accuracy of the feature will be low. On the contrary, selected
features are considered as good ones if their Fisher Scores
are much larger than zero, and also classification with these
features can achieve high accuracy. Consequently, we select
the top 10 features according to the Fisher Score, which are
listed in Table 3.

Fig. 4. D-values in the temporal dimension. In the moving state, the
D-value has a higher amplitude compared to that in the steady state.

Fig. 5. The correlation between the Fisher Score and the feature’s
impact on the RISKCOG classification average accuracy for all the
features.
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Here,K equals 10 for our case. Replace x in the last 9 for-
mulas with XaðkÞ, YaðkÞ, ZaðkÞ, XgyðkÞ, YgyðkÞ, ZgyðkÞ respec-
tively and they will render us 54 features. The first formula
provides us with 2 features from two sensors. In total, 56
features are extracted and used for the classification
purpose.

Our system is developed based on the assumption that
the distribution of sensory data collected from one sensor is
unique and different from the distribution of another sen-
sor. We conduct our experiment involving 1,513 users to
verify the assumption. Each user produces data samples
which are 56-dimensional vectors. We calculate the mean
value of each dimension and denote the center of all sam-
ples from user i as ci. We record the average euclidean dis-
tance from each data sample by user i to the center as
radius ri. Then we denote the euclidean distance between
each pair of centers as dci;j. As shown in Table 4, the average
radius is much smaller than the average distance between
centers of clusters. We thus verify the cluster is separable by
our large-scale experiment.

3.5 Semi-Supervised Online Learning Algorithm

Training Set. In the training phase, data is collected to gener-
ate the feature vectors. Each user is then profiled by n fea-
ture vectors, denoted by F i; i ¼ 1; . . . ; n. For p phone users,
n� p vectors are used to train the classifier in total. The
sample size refers to the number of feature vectors n. Treat
the dataset of the authorized user as Class 1 and that of
other users as Class 0. We then have a highly imbalanced
dataset, since p is large.

We employ the stratified sampling to handle the problem
[48], which groups the vectors by one feature value. Accord-
ing to the feature selection ranking result, the average root
sum square of acceleration (denoted as ARSSA) readings is
the most important feature for classification. Therefore, we
carry out stratified sampling based on these feature vectors
of all the other users. We also observe that the temporal con-
tinuity of sensor reading is actually helpful to depict the
authorized owner’s pattern of handling the device. Our sam-
pling method thus needs to keep this property. To be spe-
cific, we select the 1st, 100th, 200th,... ARSSA values for each
user, sort all n� ðp� 1Þ=100 values and divide them into 5
equal size strata. Then, an equal amount of samples are ran-
domly drawn from each stratum. To preserve the time con-
sistency, each chosen sample along with 99 samples after it
are all selected to form the negative sample set. By doing so,
negative samples including in the training set have better
representativeness of the p� 1 users. And the final model
becomes more robust than simple random sampling.
Regarding the number of the stratum, a larger number brings
us a fine-grained sampling, i.e., a stronger capability of rep-
resenting other users, but it also introduces higher latency.

One might argue that the number of positive samples is
much larger than that of negative samples in the actual
usage because the authorized device owner rather than
other users interacts with the device for most of the time.
However, a large number of negative samples are needed to
allow the model to generally depict the usage manner of all
users other than the authorized device owner. Otherwise,
the model would be easily bypassed by brute-force attacks.

Our training set is constructed as in Fig. 6. In the figure,
we can see all the samples of other users are selected aver-
agely in each stratum with red color. We use Group1,
Group2 and Group3 to represent different strata (actually
we have 5 groups in the experiment as mentioned before).
The ratio of the number of samples by the owner to that of
other users is 1:5, which can be properly handled by normal
learning algorithms. The optimal point is chosen by con-
ducting experiment. For effective training, the number of
positive instances usually needs to exceed 4,000. We carried
out the experiment on 106 people (see details in Table 5)

TABLE 3
Top 10 Features, Selected by Fisher Score

No. Feature Formula Definition Fisher Score

1 Average root sum square
PK

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðkÞ þ y2ðkÞ þ z2ðkÞp

=K: Average magnitude of data segment 0.937

2 RMS amplitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1½xðkÞ�2=K
q

: Mean of all amplitudes of data segment 0.901

3 Mean
PK

k¼1 xðkÞ=K: Mean value of data segment 0.862

4 Average deviation
PK

k¼1 jxðkÞ � �xj=K: Average deviation of data segment 0.813

5 Standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1½xðkÞ � �x�2=ðK � 1Þ
q

: Mean of the deviations of data segment 0.809

6 Lowest value minfxðkÞ; k ¼ 1; . . . ;Kg: minimum value of data segment 0.771

7 Highest value maxfxðkÞ; k ¼ 1; . . . ; Kg: maximum value of data segment 0.741

8 Kurtosis
PK

k¼1½ðxðkÞ � �xÞ=s�4=K � 3: Width of peak for data segment 0.598

9 Skewness
PK

k¼1½ðxðkÞ � �xÞ=s�3=K: Orientation of peak for data segment 0.552

10 Cross zero rate
PK�1

k¼0 jjsgn½xðkþ 1Þ� � sgn½xðkÞ�jj=K: The rate of sign-changes for data segment 0.510

TABLE 4
Cluster Separability, AVG for Average, and

STD for Standard Deviation

Steady Moving

AVG(ri) 7.27 5.31
STD(ri) 2.24 1.93
AVG(dci;j) 10.66 18.83
STD(dci;j) 4.47 10.02
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based on the data collected within 5 days, and the sample
size of positive instances ranges from 1,024 to 20,132
depending on the frequency of the usage. Classification
model has been developed for each person, and tested on
an equal sized testing set constructed by data collected from
the next 2 days. Accuracy for each model has been evalu-
ated and presented in Fig. 8, which shows the strong rela-
tion to the sample size of positive instances. When the
sample from authorized user is insufficient, less than 4,000,
the performance of our classification is less satisfied with
low accuracy. However, it gets improved drastically when
the sample size increases. We also notice that once the sam-
ple size exceeds the threshold 4,000, the accuracy cannot be
improved by simply adding more samples.

ClassificationMethod.We choose Support VectorMachines
(SVMs) with the radial basis function (RBF) kernel as our
classificationmethod for the following reasons:

(1) Nonlinear Classification Boundary. After analyzing our
data, we expect our features to be nonlinear and the prob-
lem is not linearly separable, and thus, we skip the most
commonly utilized Logistic regression (LR) method in the
field of user fraud detection. SVMs use a different loss func-
tion (Hinge) from LR, where they try to maximize the mar-
gin between two classes. The SVM with a nonlinear kernel
will help us build a nonlinear classification boundary.

(2) Comparatively Multi-Dimensional Space. Another
related reason for choosing SVMs is that we have a compar-
atively multi-dimensional feature space with 56 features
extracted from original observations. SVMs have been
reported in many studies to work better with our situation
[49], [50], for example, text classification. We also tried two-
dimensional reduction methods [51] before applying SVM,
principal component analysis and variable selection based
on prediction capability of each feature. And there is no sig-
nificant improvement in the results, which suggested SVM
can handle 56 features pretty well based on our enormous
sample size.

(3) Dependent/Correlated Data. Our features are extracted
from motion sensors and the readings on three dimensions
are inevitably correlated, given the nature of human activ-
ity. SVM does not explicitly assume feature independence.

Optimization. The size of model is essential when verify-
ing the user identity offline. Considering the limited compu-
tational resources of mobile devices, a smaller model
indicates the lower CPU and memory consumption in iden-
tity verification and lower traffic when pushing the model
to the smartphone. Moreover, the size of model is related to
the number of support vectors in SVM learning algorithms.
Thus, the phase of optimization also avoids overfitting. We
conduct the grid search to find the optimal configuration of
the parameters C and g in the SVM with RBF kernel, where
the parameter C trades off misclassification of training
examples against simplicity of the decision surface, and the
parameter g defines how far the influence of a single train-
ing example reaches, with low values meaning ‘far’ and
high values meaning ‘close’ [52]. We randomly choose 80
users, who generate most number of data samples in daily
usage, from our dataset with 1,513 users that will be
explained in detail in Section 5. Given the fixed convergence
parameter � ¼ 0:01, we change C from 1 to 90,000 and g

from 0 to 0.1. As shown in Fig. 7, we find the model size
decreases with the value of C. As the value of C exceeds
100, the system will get tiny decrement in the model size
(cost C in logarithmic scale). The model size will reach the
minimal value when g equals to 0.01. Meanwhile, we will
get a higher accuracy under a smaller model size.

Our semi-supervised online learning algorithm is illus-
trated in Fig. 9. The data samples are uploaded to our
server in chunks. One chunk is split into two parts for
both training and testing purposes. The new training data
and other users data is used to construct a training set.
The online learning module takes the old classifier and
training set as inputs and produces a new classifier. The
new classifier does a validation on the test samples from
the data chunk and other users data. The old classification
accuracy and the new one are represented as aold and anew,
respectively. The condition to commit the new classifier is
expressed as

�anew þ ð1� �Þaold > aold � b:

The parameter � ranging from 0 to 1 is the factor to quantify
the weight of new classification accuracy. The value b is the
threshold to represent the normal performance variation
rather than that caused by data inconsistency.

The authorized device owner may share her/his phone
to others, such as friends and family members. We have no

TABLE 5
The Details of Our Datasets Where All Participants were Skilled Smartphone Users with at Least Two Years’ Experience;

GT for Groud Truth

Dataset Participants Age Provider Devices and Vendors Duration GT

Dataset I 20 individuals 20 - 60 Our laboratory Samsung N9100 from Samsung Inc. 14 days Yes
Dataset II 34 individuals 20 - 60 Internet company I iPhone 7 from Apple Inc. 10 days Yes
Dataset III 15 individuals 20 - 60 Our laboratory Moto 360/iWatch fromMotorola/Apple Inc. 14 days Yes
Dataset IV 1513 individuals 20 - 60 Internet company II Mi 3, Mi 4 and Redmi Note2 from Xiaomi Inc. 10 days No
- 106 individuals 20 - 60 Internet company II Redmi Note2, used for parameter optimization 7 days No

Fig. 6. Training set construction. All the samples of other users are
selected on average in each stratum with red color. We use Group1,
Group2, and Group3 to represent different strata.
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idea of the label ground truth. Incorporating the noisy data
in the classification model would affect the prediction accu-
racy. Our design of commit/rollback allows RISKCOG to
detect the misalignment and filter the noisy data.

Another problem is to identify whether the classifier is
fully trained. Sotrain is defined as the positive samples of
device owner for training. We determine the model as ready
with the condition

anew > AandVarðaÞ < V andSotrain > 4; 000:

In our commit/rollback design, we have the classification
accuracy for each chunk of data. When a) the latest
prediction accuracy is higher than the threshold A, b) the
variance of all the accuracy values of those chunks which
are accepted previously is smaller than V , and c) the sample
from authorized user is more than 4,000, we will determine
the classifier training is finished. This implies that the per-
formance converges to a stable state.

Decision. Given a feature vector F i, the trained classifier
outputs the probability whether the owner is using the
phone p, which is used to get the binary decision d as

d ¼ 1; ifp > u

0; else:

�

Here, u is the decision threshold from 0 to 1.

4 IMPLEMENTATION

Our data collection scheme involves verifying the active
device screen and the presence of applications in the fore-
ground. We implement the BroadcastReceiver [53] to
capture the system event where the device screen is turned
on. Android provides two APIs: getRunningAppPro-

cesses() and getRunningTasks(), to retrieve the cur-
rent application running in the foreground. However,
starting from Android 5.0, those APIs are deprecated. To
preserve the portability of RISKCOG on the fragmented
Android devices, we invoke the system command line tool
ps and implement a parser to map the ID of a running
application (i.e., pid) to the application name on Android
5.0 and Android 6.0. Since Android 7.0, Android has locked
down the permissions of /proc, we can’t get the running
process via ps. Instead, the list of running apps can be alter-
natively fetched by using UsageStatsManager [54] on
Android 7.0 and 8.0. Our implementation allows us to inter-
cept the active applications properly on all the existing ver-
sions of Android.

As for the wearable devices, Android wear API [55] and
watchOS API [56] are used for Android and iOS, respec-
tively. When interacting with server, Apache HttpClient
and AFNetworking are integrated in our system, which
help to do the network request operation. Due to some
watch devices such as android watch and iWatch cannot
communicate to the server directly, Android and iOS pro-
vide Google Play Service and WatchConnectivity package

Fig. 8. Sample size requirement. Classification accuracy gets improved
drastically when the sample size (0-4,000) increases.

Fig. 7. Model size versus C, g, and accuracy.

Fig. 9. Semi-supervised online learning; each chunk of data is committed
if there is no classification accuracy drop and the training finishes when
the classification accuracy values are stable across chunks.
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respectively to get connection between watch and the corre-
sponding phone. The server is implemented in django [57]
and processes the data sent from client.

We implement the data preprocess module in C++. It is
intended to filter the data which is ineffective to fingerprint
user’s pattern and distinguish the two motion states. We
use LibXtract [46] to extract features. We train our model
with LibSvm [58] on the server side and enforce the offline
identity verification with AndroidLibSvm [59] on the
Android platform and LibSvm on the iOS platform.

Overall, we implement RISKCOG with over 7,000 lines of
code in C++ for data processing and algorithm design, 2,000
lines of code in Python for server setup, 2,000 lines of code
in Swift for iOS and 8,000 lines of code in Java for Android.

5 EVALUATION

We define the ground truth as the situation that the device
owner is using the smartphone. In total, we obtained four
datasets for the evaluation purpose, the details of our data-
sets are shown in Table 5.

For the experimental data with ground truth, we solicited
20 participants to use the same phone for two weeks. Each
participant generates 9240 effective samples by handling the
phone in both steady and moving states (dataset I). For each
user, we split the data samples into the training set and the
test set. The ratio of the number of samples in the training set
to that in the test set is 4:1. In the training set, the ratio of the
number of samples from the owner to that of other users is
1:5. The test set follows the same distribution. Moreover, we
were able to obtain a labeled dataset provided by a big Inter-
net company for the accuracy benchmarking test. That data-
set was generated by 34 participants in the steady state from
the iOS platform (iPhone 7) (dataset II). To verify the cross-
platform portability of our system, we have 15 participants
to wear Moto 360 and Apple Watch 3.0 for one week. Our
own app records the related motion data every time the par-
ticipants raise hands to check the time on the watch. For each
participant, we get 6,000 effective samples (dataset III). Our
fourth dataset is a large-scale raw dataset without ground
truth, which was directly collected from the product by
another Internet companywithmillions of users. For the eth-
ical consideration, we include the purpose of data collection
in the user agreement. All the participants were informed of
this study and they were given the option to opt in or opt
out. Finally we collect data from 1,513 different users for 10
days (dataset IV). For all the above datasets, the collection fre-
quency is 50 Hz. Each data collection phase lasts 3 seconds.
For the sake of traffic usage and battery consumption in the
production environment, there are at most 20 data collection
phases (60 seconds) in one hour. IMEI is used as the user
identifier. Note that a portion of the data collected was fil-
tered, which is ineffective to fingerprint the user (e.g., phone
is put on a stationary plane).We define the coverage of users’
patterns as the ratio of the number of effective samples to
that of all samples. On (dataset IV), we get 283,133,354 sets of
original data in total and 283,006,659 of them are effective
and finally used. The coverage rate of users’ patterns is 99.9
percent (i.e., 283,006,659/283,133,354), which indicates that
most of the users’ natural usage of mobile devices has been
used by our system.

The distributions of training and test sets are identical to
the experimental data. The following metrics are used in
our evaluation.

� True positive (TP). The authorized owner is correctly
identified.

� False positive (FP). Other users are incorrectly identi-
fied as the authorized owner.

� False negative (FN). The authorized owner is incor-
rectly identified as other users.

� True negative (TN). Other users are correctly
identified.

� Performance & Overhead. We evaluate the time
latency of training and memory usage of each user
on the server side. Then we check the battery con-
sumption, CPU, and memory usage of the phone
when our client app collects data and verifies the
user’s identity.

The classification performance of RISKCOG is depicted
with the following values: precision for phone owner Powner,
recall for phone owner Rowner, precision for others Pother,
recall for others Rother, and classification accuracy.

Powner ¼ TP=ðTP þ FP Þ;
Rowner ¼ TPR ¼ TP=ðTP þ FNÞ;
Pother ¼ TN=ðTN þ FNÞ;
Rother ¼ TN=ðTN þ FP Þ;
FPR ¼ FP=ðFP þ TNÞ;

Accuracy ¼ TP þ TN

TP þ FP þ FN þ TN
:

The ROC curve reflects the overall performance of RISKCOG.
It shows the true positive rate against false positive rate
with various classification threshold u. Specifically, the area
under the curve (AUC) is defined as AUC ¼ P X1 > X0ð Þ,
where where X1 is the score for a positive instance and X0

is the score for a negative instance.
The training module is deployed on the server side with

LibSVM, where both the positive samples and negative sam-
ples are available. As discussed above, our evaluation of
accuracy also involves both positive samples and negative
samples, and is conducted on the server. In the architecture
of RISKCOG, the user identity verification on the Android plat-
form is enforced offline with AndroidLibSvm, where only
the data generated from the device (positive sample) is avail-
able. We verify that both LibSVM and AndroidLibSvm

produce the same prediction result given the identical pre-
dictionmodel and data sample as input. It is thus valid to uti-
lize our evaluation of accuracy to depict the effectiveness of
RISKCOG to enforce user identity verification locally.

5.1 Accuracy

Batch Learning-Experimental Data with Ground Truth. Since the
experimental data is labeled, our online learning algorithm is
not needed, and we simply train the classifier with the whole
training set, in which the classification threshold u was set
to 0.5. Regarding the configuration of SVM, we set the cost
value as 100 and g as 0.01. All the trained classifiers for the 20
participants (dataset I) achieve high precision and recall. We
summarize the performance of RISKCOG on various datasets in
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Table 6. In particular, the average values of Powner, Rowner,
Pother and Rother are 94.76, 71.76, 77.41, and 96.53 percent
for the steady state. As for the moving state, the values are
94.15, 64.37, 74.07, and 95.80 percent, respectively. The aver-
age accuracy for the steady state is 84.15 percent, and that
for the moving state is 80.09 percent. The results indicate
that RISKCOG causes low false positives, while the number of
false negatives is relatively high. Asmentioned before, for our
training set, we set the ratio of the number of positive samples
(owner) to that of negative samples (other users) as 1:5. It
means the classifier can accurately recognize the unautho-
rized users’ patterns, i.e., the illegal access, while some
gestures of the authorized owner will be missed. In user iden-
tification, a false positive, i.e., the illegal access to the user’s
account, is more critical than a false negative (false alarm).
Thus, we pay more attention to restricting the false positives
when configuring our system. One might argue that the dif-
ferences between two people are mainly caused by the hard-
ware of different phones [36] rather than the users manner
of how to use the phone. Recalling that all the participants in
the lab use the same phone, the high classification accuracy
indicates that our user authentication is independent of the
hardware sensor difference.

In Fig. 10, we use the ROC curve to depict the true positive
rate against the false positive rate at various threshold u. It
starts from 0 to 1 with step growth 0.01. Given the value of u,
we calculate the average values of TPR and FPR for all the
participants. The areas of the two curves for moving/steady
states are 0.9043 and 0.9513. For security protection, a large
FPR is more harmful to the device users than a small TPR.
However, a small TPR would degrade the convenience of

using the system. RISKCOG has enough space for tuning given
various requirements of sensitivity and specificity.

For the 34 participants (dataset II) in the steady state from
the iOS platform, we have the average values of Powner,Rowner,
Pother andRother as 88.07, 75.08, 97.28, and 98.87 percent.More-
over, we achieve the average values of Powner, Rowner, Pother

andRother as 88.22, 93.09, 99.50, and 99.11 percent for Android
Watch, and 95.98, 97.53, 99.82, and 99.71 percent for iWatch
(dataset III).

Online Learning-Raw Data without Ground Truth. In the
training set, each user on average has 20,648 samples for the
steady state and 9,280 samples for the moving state (dataset
IV). The training set will be divided into 10 chunks. Regard-
ing the conditions of accepting a chunk of data and training
termination (Section 3.5), we set the parameters �, b, A, and
V as 0.5, 0.1, 0.8, and 0.05, where we observe the average
number of chunks taken to finish the online learning is 5.8.

In Fig. 10, the areas of the two curves for moving/steady
states are 0.9719 and 0.9506, respectively, for the 1,513 users
without ground truth. The performance is slightly better
than that in the laboratory setting, which could be attributed
to the bigger size of the training set and the stratified sam-
pling applied. It allows the classifier to differentiate the
authorized user well from others.

For all the 1,513 users in the wild, our system achieves the
average values of Powner, Rowner, Pother and Rother as 87.39,
73.28, 96.07, and 98.43 percent in the steady state, and 89.35,
81.41, 97.81, and 98.89 percent in the moving state. The
average accuracy values for the two states are 93.77 and
95.57 percent, respectively. Evenwith those challenges in the
practical deployment, such as imbalanced dataset and unla-
beled data, our design, including the stratified sampling and
semi-supervised online learning algorithm, allows RISKCOG

to have the performance that is similar to that in the labora-
tory setting. The prediction accuracy for the steady state is
slightly lower than that for the moving state, from which we
can see that our feature set is nearly independent of user’s
motion state and RISKCOG is able to provide the full protec-
tion on the user’s account. All the previous studies [6], [7],
[8], [10], [11], [12], [13] rely on the features that are only avail-
able when the user is moving, such as step cycle. We also
compared with the stat-of-the-art solutions in the recent
years with the collected data and computed the correspond-
ing accuracy in both our two motion states as shown in
Table 7. We can see our approach performs better than all of
other solutions on the large dataset with 1513 people. It’s
interesting to see the one-class SVM performs much worse
than our binary-class SVM. The main reason is because the
occasional overlapping among different person cannot be
well addressed by one-class classification. Compared with

TABLE 6
The Performance of RISKCOG on Different Datasets

Powner Rowner Pother Rother

Dataset I Steady 94.76% 71.76% 77.41% 96.53%
Moving 94.15% 64.37% 74.07% 95.80%

Datatset II Steady 88.07% 75.08% 97.28% 98.87%

Dataset III - (Moto 360) 88.22% 93.09% 99.50% 99.11%
- (iWatch) 95.98% 97.53% 99.82% 99.71%

Dataset IV Steady 87.39% 73.28% 96.07% 98.43%
Moving 89.35% 81.41% 97.81% 98.89%

Fig. 10. ROC curve for 20 users with ground truth and 1,513 users with-
out ground truth; the decision threshold u varies from 0 to 1 at step
growth 0.01.

TABLE 7
Comparison with Other Solutions on Our dataset IV

Study Classifier
Accuracy

Steady Moving

RISKCOG SVM (binary-class) 93.77% 95.57%
Zde�nka et al. (2016) [14] SVM (one-class) 85.97% 87.05%
Lee et al. (2017) [15] DTW 86.23% 86.74%
Buriro et al. (2017) [16] Random forest 91.98% 92.74%
Shen et al. (2018) [17] HMM 90.84% 90.23%
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[15], RISKCOG can reduce the number of explicit authentica-
tions a user must do by at least 73.2 percent (i.e.,
99:9%� 73:28%) on average, where 99.9 percent is the cover-
age rate of users’ patterns and 73.28 percent is the recall in
steady state, while the value of study [15] is 32.9 percent. It
shows that our system has a better applicability.

5.2 Overhead

We measure the latency of the training phase on the server,
and the results are listed in Table 8. We set up the experi-
ment on a server with an Intel Xeon E5 CPU and 64G mem-
ory running on Ubuntu 14.04. On average, RISKCOG is able
to analyze the user’s motion data for 10 days (dataset IV)
and train the classifiers corresponding to the steady/mov-
ing states within 150s. For each user, RISKCOG will run on a
single core with the memory usage 0.1 percent.

On the client side, we utilize the tool Emmagee3 to assess
the impact on battery consumption, CPU, and memory
usage. Emmagee can sample the hardware resource usage
of an app on the device. Table 9 shows the results. For the
battery consumption, we let one participant use the client
app for three hours, which includes both data collection
and offline identity verification. Only one percent of the bat-
tery is required by our app in one hour. The CPU usage is
over 10 percent on the device Samsung N9100 during data
collection. The case does not happen on other two phones.
It is possible that the higher CPU utilization could be attrib-
uted to the low-level system implementation. Our optimiza-
tion of SVM setup reduces the resource consumption of the
CPU-intensive offline verification.

We also check the latency of offline user identity verifica-
tion. We execute the procedures: data collection, data pre-
processing, feature extraction, and decision for 1,000 times
on the device Mi 4, and record the average time for each
step. The results are listed in Table 10. We can see the whole
process can be finished within 3237.7 ms. The latency intro-
duced by steps other than data collection is negligible.

5.3 Resistance to Brute-Force Attacks and
Mimicry Attacks

For password cracking, the brute-force attack tries a huge
set of possible keys against the credential verification mod-
ule. For the mimicry attack, the attackers observe the user’s
usage manner and can impersonate and mimic the device
owner’s behavior. In our proposed system, we verify the
identity of user by a sophisticated set of features collected
from motion sensors, and the attacks in our scenario are
thus based on a large set of sensor data generated by users

other than the authorized device owner. To evaluate the
robustness of trained classifiers, we set up automatic attack
and mimicry attack, respectively.

5.3.1 Automatic Attack

For the nine values collected from motion sensors, we
define the starting point of data collection about the user
owner as the initial point.

We observe that the motion events by the human attack-
ers who try to bypass our check have the property of tempo-
ral continuity. Our random data generator also follows this
rule, where the current slot differs from the previous slot by
the small step deviation range. Moreover, the generated
data is bounded with the lower bound and upper bound to
guarantee that they confirm to the laws of physics. The
bound for acceleration, gravity and gyroscope is �20, �10
and �0:2, respectively. In daily usage, users are possible to
change their ways of handling the phone, which would
break the continuity of sensor data. We thus define a contin-
uous interval, in which the consecutive samples are contin-
uous, and entering a new continuous interval involves the
generation of a new initial point.

Given the trained classifiers of 1,513 users, we generate
the fake data including 600K samples and check the per-
centage of samples which are correctly labeled as unautho-
rized. The average percentage of samples successfully
blocked by our system is 92.32 percent.

5.3.2 Mimicry Attack

We have humans to launch the mimicry attack. One classi-
fier is trained for the authorized device owner by finger-
printing the usage manner. 19 participants observe how the
device owner uses his/her smartphone and handle the
owner’s phone with the educated gestures for 100 times,
where a participant generates 49 samples each time. Those
samples are checked against the classifier, and we identify
the percentage of samples which are correctly labeled as

TABLE 8
Training Latency, AVG for Average, STD for

Standard Deviation, and the Results are Based
on the Data from 1,513 Users

Steady Moving

#Training samples AVG 20,648 9,280
STD 15,660 10,212

Training time (s) AVG 148.36 21.21
STD 177.23 24.06

TABLE 9
The Overhead Results on Three Different Smartphones Where
the Measurement of Battery Consumption Lasts three Hours

Data
Collection

Identity
Verification

Phone
Type

Battery
Consumption (mAh)

CPU
(%)

Memory
(MB)

CPU
(%)

Memory
(MB)

Samsung N9100 132.5/3000 10.34 14.4 8.80 21.4
Sony Xperia Z2 113.8/3200 1.82 18.0 9.00 26.0
MI 4 128.7/3080 1.30 14.0 12.00 24.3

TABLE 10
Latency of Offline User Identity Verification

Procedure Time (ms)

Data collection 3211.6
Data preprocessing 0.5
Feature extraction 12.3
Decision 13.3

Overall 3237.7
3. Emmagee. https://github.com/NetEase/Emmagee
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other users. RISKCOG blocks the attacks by human with prob-
ability over 99.85 percent.

We can see there is difference between the percentages
blocked by RISKCOG in two attack scenarios. On one hand,
our brute-force attack simulates the human behavior as
much as possible. On the other hand, it is extremely difficult
for a human to launch such an attack by playing with the
phone for two reasons:

(1) Amount of Data. From the perspective of our experi-
ment, imitating the usage manner of the phone owner is
time-consuming. Finally, we were able to gather total 4,900
data samples from each participant, which is far lower than
those generated by our brute-force attack.

(2) Data Coverage. Manually handling the smartphone
only involves a limited number of gestures. However, of the
nine values collected from the acceleration sensor, gyro-
scope sensor, and gravity sensor, our brute-force attack gen-
erates the samples which have even distributions and fully
cover the ranges consistent with physics.

We also consider a more sophisticated attack that an
attacker tries to slowly shift the machine learning model. We
asked 19 participants to imitate the user owner and each par-
ticipant uses the owner’s phone with the educated gestures
for 30 times in the training phase.We found that the efficiency
of attacks mainly depends on the degree of training. When
the number of positive samples created by the user owner is
less than 1,000, the ratio of the imposter sequences accepted
by our semi-supervised online learning is 35.1 percent. While
the number of positive samples is more than 4,000, the accep-
tance rate of the imposter sequences is 1.8 percent. It is reason-
able considering that the model which is not well trained is
more likely to be shifted by mimicry. The results suggest that
users should take an additional effort in the training phase
(e.g., setting up the password).

5.4 Usability Analysis

In Section 3.5, we have analyzed the relationship between
the accuracy and the sample size of positive samples. In this
section, we utilize the System Usability Scale (SUS) [60] to
evaluate the usability of our system from users’ perspective.

We distributed RISKCOG along with a questionnaire
adapted from the SUS to 20 participants (dataset I). The SUS
has been used for measuring the system usability since
1986. It’s also used by previous mobile authentication stud-
ies [61], [62]. All the participants are asked to score 10 ques-
tions with one of five responses that range from Strongly
Agree (score is 10) to Strongly disagree (score is 0). The SUS

score ranges from 0 to 100. Based on the research in [60], a
SUS score above 68 would be considered above average.

We asked the participants to score RISKCOG after having
used the app for two weeks. We achieved the average SUS
score of 84.5. It is higher than the average value 68. Table 11
summarizes the sample acquisition time and system usabil-
ity scale for different methods adapted from [61], our score
is better than the score of password (78), voice (66) and
face (75) as reported in [61]. Most of the users appreciated
the ease of use and effective functionality of RISKCOG. We
also got some negative responses, most of which are like
“the training phase lasted a bit long”. The main reason is
that those users do not actually use the phone frequently
but RISKCOG needs enough data to train the classifier. In the
future, we plan to exploit more potential features (e.g.,
using CNN, LSTM) to represent user’s manner. Hopefully
we can get a higher accuracy with a smaller training set
(e.g., transfer learning) by those potential features.

6 DISCUSSION

In this section, we discuss how an attacker aware of RISKCOG

design principle tries to evade user authentication or exploit
it to, for example, make legitimate sensor data. For evasion,
an attacker could exploit a user’ pattern and pretend herself
as the device owner.

6.1 Can Attackers Exploit Sensor Data to Pretend to
Be the Legitimate User?

Since the data from the motion sensor is available for any
apps to read, it is possible that attackers can exploit the data
collection process of RISKCOG. After extracting the sensor
data, the attacker may use it to deduce usage pattern of the
device owner. We argue that the above exploitation tactics
can be combated through a slightmodificationwhen generat-
ing the train set, such as interchanging features in the sample
vectors, e.g., < F1; F2; . . . >)< F2; F1; . . . > , which is
totally invisible to the attackers. Consider the feature
sequence < F1; F2; . . . ; F56 > , we will get 56! � 7 	 1074 pos-
sible permutations after interchanging. Thus, even if the
attacker obtains the well-pretended sensor data, he could not
bypass our system aswell.

6.2 How to Mitigate Deliberate API Hooking against
User Authentication?

Attackers may customize the return values by hooking the
motion sensor related APIs, and modify the original sensor
data which was input into RISKCOG. To mitigate this issue, the
possible ways are i) to check if the phone is rooted. Hooking
the low-level systemAPIs, such as getting motion sensor data,
needs the root privilege of the device. Thus we can enforce
root detection anddeploy our service on those deviceswithout
being rooted; ii) to monitor the rationalization of raw sensor
data. For example, to bypass our system, attackers may gener-
ate repeated dataset to satisfy the valid classifier. If a large
number of repeated data is detected, the train process would
stop and RISKCOGwould inform the users at the same time.

7 RELATED WORK

In this section, we investigate the relevant studies and com-
pare with them to highlight the novelty of our approaches.

TABLE 11
Sample Acquisition Time, System Usability Scale Summary for

Different Methods Adapted from [61]

Method Sample Acquisition Time (s) SUS Score

RISKCOG 3.2 84.5
PIN 3.8 78
Password 4.3 78
Voice 5.4 66
Face 3.9 75
Gesture 4.2 77
Face + Voice 5.3 46
Gesture + Voice 5.7 50
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Our Authentication does not Need User Movement or Fixed
Device Placement. The use of sensor data for user authentica-
tion has been explored in recent years. Motion sensors, such
as acceleration sensor, was used by [6], [7], [8], [11], [12],
[13] to authenticate cell phone users. Derawi et al. [6] and
Kwapisz et al. [7] made use of phone-based acceleration
sensor to identify and authenticate cell phone users.
Ren et al. [12] devised a user verification system leveraging
the unique gait pattern derived from acceleration sensors to
detect possible user spoofing in the mobile health care sys-
tem. These approaches require that the sensors are placed
in specified body locations and the samples in the training
set are well labeled. Lu et al. [10] overcame these limitations
by projecting the data samples onto a global coordinate sys-
tem for the resilience to device orientation and handling the
unlabeled data with an unsupervised learning algorithm,
and achieved the offline user identity verification. However,
it relies on user inputs to update the model and reduce false
negatives. While our semi-supervised online learning algo-
rithm not only requires no user actions but also has a lower
latency of handling unlabeled data in training compared
with an unsupervised one. Moreover, with a radically dif-
ferent design without involving complex UBM and the extra
step of feature extraction, we reduce the latency of verifica-
tion by 90 percent. All those solutions require the user’s
movement because the model depends on the features, such
as step cycle. RISKCOG can verify the identity when the user
is steady by the manner of handling the device. Given the
rare limitations on the application scenario, our system can
provide an additional protection on a user’s sensitive serv-
ices. Furthermore, we consider a set of users that is signifi-
cantly larger than in most of the prior studies.

We Design a Semi-Supervised Online Learning Algorithm
with High Accuracy and Low Latency to Deal with the Unlabeled
Data in a more Sophisticated Environment. SenSec [9] did the
similar job as RISKCOG. SenSec constantly collects sensory
data from accelerometers, gyroscopes and magnetometers,
and models how a user uses the device. The result showed
that SenSec achieved an accuracy of 75 percent in identifying
the users and 71.3 percent in detecting the non-owners. RISK-

COG gets a higher accuracy as well as a low latency com-
pared with SenSec. Also, RISKCOG can authenticate the
owner once he/she opens an app and make the decision
immediately, while the test phase of SenSec lasted 24 hours
which made the real-time detection unpractical. Moreover,
SenSec can not deal with the unlabeled data in a more
sophisticated environment, while RISKCOG can well address
this issue by a semi-supervised online learning.

We Design a New Data Collection Mechanism with a High
Coverage Rate of Users’ Patterns. To validate that RISKCOG is
more tailored to user identification, we also compare our
work with a recent implicit authentication system called
Secure Pick Up [15]. Secure Pick Up can authenticate the user
without his/her movement. Different from RISKCOG, Secure
Pick Up only extracts the pick-up movements starting from
a stable state which has less representation because picking
up the smartphone from a bag/pocket is very common in
real world. In general, Secure Pick Up requires a stable pick-
ing up and can only detect 35.6 percent of users’ pick-up
movements. The requirement is hard to satisfy in the practi-
cal environment. On the contrary, the experiment on 1,513

users shows that RISKCOG will recognize 99.9 percent (i.e.,
283,006,659=283,133,354) of users’ patterns. RISKCOG verifies
the identity, when the user is steady simply by the manner
of handling the device.

We Select Features which can Represent Users’ Patterns With-
out any In-App Invocation or User Privacy Tracking. Feng et al.
[63] investigated authenticating users with touchscreen ges-
tures, where they built a sensor glove to collect data.
Touchscreen inputs were also used by [64], [65], [66] for
identity verification. Sitov�a et al. [14], Buriro et al. [16] and
Shen et al. [17] combine motion sensors and touchscreen for
active smartphone authentication. They built an Android
app to capture the touchscreen events because those data is
only available at the application level. In contrast, RISKCOG

does not depend on external sensors and all required fea-
tures are on the device level.

Our System has Cross-Platform Capability and Performs Better
than Previous Work on Smartwatch. Motion sensors have been
used on Smartwatch to identify users when the user wears
the device. Previous work were mainly based on walk pat-
terns [67] and custom gestures [68], [69]. Other studies [70],
[71] combine a wearable smartwatch with a smartphone to
authenticate user. Mare et al. [70] performed continuous
authentication with 85 percent accuracy with a latency of 10-
50 seconds. Yang et al. [68] and Lewis et al. [69] authenticated
the owner utilizing explicit gestures such as circle and rota-
tion which were customer by the users. Compared with the
above work, RISKCOG will make a high accuracy decision
within 3 seconds once the smartwatch is being used (i.e., rais-
ing hands to check the time on thewatch).

The above factors (in bold) face respective challenges,
which can hardly be jointly addressed by merely adapting
existing motion sensor-based authentication methods. RISK-

COG outperforms all the existing systems in that it over-
comes these challenges all together.

8 CONCLUSION

In this paper, we present the system RISKCOG to provide on-
demand, offline unobtrusive user identity verification with
a learning-based approach. The trained classifier depicts the
owner’s specific manner based on behavioral biometrics
and usage patterns exhibited in daily device use. Unlike
previous related studies, we have no requirement on the
user’s motion state or the device placement. Plus the offline
real-time identity verification that allows our system to be
usable in the disconnected environment, RISKCOG can pro-
tect user anywhere and anytime. By deploying RISKCOG in
the production environment on a large scale, we resolve
several new issues, such as the imbalanced dataset and the
training set without ground truth. With our stratified
sampling method and a semi-supervised online learning
method, we achieve the classification accuracy rates
93.77 and 95.57 percent among the 1,513 users for the steady
state and the moving state, respectively. The authentication
accuracy computed on Android Watch and iWatch are
98.71 and 99.56 percent, respectively. RISKCOG can perform
implicit authentication on any privacy-sensitive apps with a
99.9 percent coverage rate of users’ patterns, and can reduce
the number of times that a user has to do explicit authenti-
cation by at least 73.2 percent. Also, we demonstrate that
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RISKCOG can effectively defend against brute-force attacks
and mimicry attacks.
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