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TRAPCOG: An Anti-noise, Transferable, and Privacy-preserving Real-time
Mobile User Authentication System with High Accuracy
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Abstract—The authentication technology of mobile device users has been studied for decades. To balance security, privacy, and
usability, motion sensors-based user authentication methods are widely investigated in recent years. However, existing studies meet
the problems such as scarcity of training samples, underutilization of data, poor de-noising ability, insufficient transferability, privacy
leakage, and low accuracy. To overcome these difficulties, we propose a system, called TRAPCOG, with the following capabilities: 1) In
the phase of data collection, TRAPCOG can eliminate man-made noise (mislabeling) through differential training based on
down-sampling. 2) In the model training stage, the siamese neural network with Long Short-Term Memory (LSTM) as the sub-network
is used to achieve sufficient coverage of sample patterns and the transferability of the model. 3) In the phase of real-world
authentication, the privacy of the user is tremendously protected through end-side model deployment and local authentication.
Experimental results on a dataset composed of 1,513 users with real-world noise show that TRAPCOG has high accuracy and strong
transferability, which is much better than state-of-the-art studies.

Index Terms—User Authentication, Mobile Device, Differential Training, Deep Learning.
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1 INTRODUCTION

THE rapid growth of storage and computation ability
makes the mobile device a valuable tool for Internet ac-

tivities. Nowadays mobile devices (especially smartphones)
have become one of the main platforms for users to commu-
nicate and interact with different forms of data and media.

To prevent user information from being leaked, vari-
ous technologies have been proposed to authenticate the
mobile user. According to different objects, the authenti-
cation methods can be divided into two main categories:
knowledge-based and biometric-based. Knowledge-based
methods require users to provide specific information (e.g.,
passwords, PINs, and graphical gestures [15]) for subse-
quent access [16]. Although such methods are inexpensive,
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they still suffer from the inconvenience of, e.g., repeated in-
put in a smaller dialog box, and from several representative
attacks (e.g., brute-force attacks, shoulder surfing attacks,
touchscreen smudges, and sensor-based inferring [17–22]).
Correspondingly, authentication methods based on biomet-
rics (e.g., static biometrics such as faces and fingerprints)
are widely accepted by users due to their higher efficiency
and accuracy [23–25]. However, the aforementioned static
biometric technologies require the user to participate in the
authentication process explicitly. For example, the user must
face the camera or move the finger to the fingerprint sen-
sor. Frequent human-device interaction will undoubtedly
reduce the user experience. In addition, the collection of
biological content will also cause users to worry about the
leakage of their personal privacy information.

Due to the increased user requirements for the secu-
rity, usability, and privacy of the authentication system,
an authentication system that is user-friendly, adaptable to
different scenarios, of high accuracy, and privacy-preserving
is urgently required. In recent years, motion sensors-based
dynamic user authentication studies are widely investi-
gated [1–14]. These methods usually collect data from a
series of motion sensors such as acceleration sensors, grav-
ity sensors, and gyroscope sensors. By adopting various
machine learning or deep learning algorithms, the unique
behavior patterns of the user’s gait or gesture are identified,
to achieve the purpose of user authentication. Among these
studies, the most representative work is ESPIALCOG [1],
which implements a general, efficient and robust mobile
user implicit authentication system. However, the problems
such as low coverage of human-device interaction patterns,
weak denoising ability, insufficient transferability, privacy
leakage, and low accuracy still exist, rendering it difficult
for motion sensors-based dynamic user authentication tech-
nology to be practical in the real-world scenarios.

To deal with the above problems, in this paper, we de-
sign an anti-noise, high coverage, transferable, and privacy-
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TABLE 1
Comparison with related studies on smartphone sensor-based authentication. L represents low, M represents medium, and H represents high. NA

represents the information is not mentioned.

Study
Require

User
Movement

Device
Placement Latency Interaction

Coverage
De-Noise

Ability Transferable Accuracy

TRAPCOG No Dynamic L H H Yes H
ESPIALCOG(2020) [1] No Dynamic L M M No M
RISKCOG (2019) [2] No Dynamic L M L No M

Derawi et al. (2010) [3] Yes Fixed NA L NA No L
Kwapisz et al. (2010) [4] Yes Fixed NA L NA No M

Ho et al. (2012) [5] Yes Fixed NA L NA No NA
Zhu et al. (2013) [6] No Fixed H L NA No L
Lu et al. (2014) [7] Yes Dynamic M L NA No M

Kayacik et al (2014) [8] Yes Fixed H L NA No M
Ren et al. (2015) [9] Yes Fixed NA L NA No M
Lee et al. (2015) [10] Yes Fixed M L NA No M

Sitová et al. (2016) [11] Yes Fixed M L NA No M
Lee et al. (2017) [12] No Fixed L L NA No M

Buriro et al. (2017) [13] Yes Dynamic NA L NA No M
Shen et al. (2018) [14] Yes Fixed M L NA No M

preserving real-time mobile user authentication system
based on motion sensors, called TRAPCOG. In Table 1, we
list the problems of previous motion sensor-based methods
and summarize four challenges as follows:
(1) Weak de-noising ability. Almost all previous study [1–
14] about user authentication based on dynamic biometirc
relied on training machine learning model. However, the
construction of the model is closely related to the quality of
the dataset, and the noise in it will greatly affect the quality
of the model. For data collected in a non-lab environment,
noise can be divided into machine abnormality and man-
made noise. From Table 1, we can find that most of the
existing studies hardly considered the influence of noise
except RISKCOG [2] and ESPIALCOG [1]. The former was
able to remove the flat data which was not related to the
behaviors of users. The latter eliminated three anomalies
caused by the machine/hardware. However, in the real-
world scenario, the specific behaviors of users during the
data collection period cannot be determined (i.e., temporar-
ily lending smartphones to others). These behaviors will
undoubtedly cause mislabeling and affect the accuracy of
the final authentication. For this problem, RISKCOG took a
semi-supervised learning method to reduce noisy labels and
ESPIALCOG took an enhanced stochastic gradient descent
algorithm for robust training. However, the former mainly
rely on a small set of labeled data, and the latter was unable
to eliminate mislabeling. Hence, existing methods cannot
meet the practicality of the authentication system.
(2) Insufficient coverage of human-device interaction pat-
terns. The experiment in most studies [3–14] was conducted
in a controlled laboratory environment with a small number
of participants (7-50 people). Among most of the experi-
ments [3–5, 7–11, 13, 14], all participants were asked to carry
the mobile device and perform designated exercises (e.g.,
walking back and forth in a straight line at a constant speed)
with prescribed time (ten minutes to several hours). This has
the disadvantage that the coverage of human-device inter-
action patterns is insufficient since users may perform other
behaviors such as sitting and running in daily life. Besides,
previous studies [3–5, 8–12, 14] had a strong assumption
that the device placement should be fixed. Moreover, the

training set and test set in the above studies are performed
under the same batch of users, and the performance of
authentication models under real-world scenarios cannot
be guaranteed (i.e., whether unknown/new attackers can
bypass the authentication system). RISKCOG [2] and ESPI-
ALCOG [1] experimented on a large dataset (1,513 people)
with real-world noise for ten days to ensure the validity of
the verification indicators. However, to solve the problem
of an imbalanced dataset in binary classification models, the
ratio of the number of samples from the user owner to that
of other users was 1:5 in the above two studies [1, 2]. It will
also lead to insufficient coverage of complex human-device
interaction patterns in the real world.
(3) Insufficient transferability and privacy leakage. It is
crucial to keep the transferability of the model and protect
the privacy of user data in the mobile user authentication
system. The idea of the previous work is mainly to generate
a unique model for each user, it has the problem that when
the service is commercialized and the number of users rises
to hundreds of thousands or even millions, such computing
costs are extremely huge. Moreover, in current implicit user
authentication studies, all studies assume that users need
to actively upload sensitive sensor data to the cloud to
generate an authentication model, which will cause incon-
venience to the user and the problem of privacy leakage.
(4) Low Accuracy. Accuracy, as well as True Positive Rate
(TPR) and True Negative Rate (TNR), are important criteria
for a comprehensive evaluation of the safety and usability of
the authentication system. In most of the previous studies,
the scarcity of both training and validation (i.e., data from
unknown/new attackers) samples makes it difficult to fully
demonstrate the practical ability in the complex environ-
ment. Though RISKCOG [2] and ESPIALCOG [1] obtained
more credible data in the noisy environment, as well as
a relatively higher accuracy (e.g., 81.41% TPR and 98.89%
TNR for RISKCOG [2], 87.00% TPR and 97.93% TNR for
ESPIALCOG [1]), they still fail to meet the high commercial
safety standards.

Compared with the latest work ESPIALCOG [1] and
RiskCog [2], our system has the following advantages: 1) We
present a targeted optimized differential training method
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to eliminate the influence of man-made noisy labels. 2) We
propose a siamese neural network with Long Short-Term
Memory (LSTM) as sub-networks to deal with time-series
data. It can maximize the coverage of available data, achieve
sufficient coverage of interaction patterns, and realize the
transferability of authentication models. 3) We deploy the
well-trained model at the end-side to tremendously protect
the privacy of users, reducing the time and economic cost of
supplies to the greatest extent and improving the practical-
ity of the system in real-world scenarios. All in all, we have
made the following contributions.

• To eliminate the influence of man-made noise (noisy
labels), we propose a targeted optimized differential
training method based on the analysis of the data
collection process in the real world. Differential train-
ing is fully automated in the process of label de-
noising and does not require any domain knowledge
or manual inspection. Moreover, it does not rely on
any additional datasets with correct labels, which is
better than methods [26, 27] relying on a small set of
labeled data. Meanwhile, we improve the differential
training to adapt to the problem of sample imbalance
in binary classification in this system. It finally helps
our system improve the accuracy by 1%.

• We design a siamese neural network structure based
on LSTM for user authentication. By generating time-
series data pairs, the coverage of training data is
maximized (i.e., 100%), to achieve sufficient coverage
of complex and diverse human-device interaction
patterns. Besides, the network can learn contextual
behaviors within the time-series data and distinguish
the similarity of input data pairs. The above capa-
bilities enable the corresponding model to have a
strong transferability. Moreover, the locally deployed
lightweight model tremendously protects the data
privacy of the user, and greatly reduces the comput-
ing costs of suppliers.

• TRAPCOG can perform real-time mobile user au-
thentication in a large scale real-world noisy dataset
(1,513 people) with high accuracy. The experimen-
tal results show that the TPR, TNR, and ACC of
TRAPCOG can reach 98.97%, 99.55%, and 99.26%,
respectively. Fortunately, the accuracy will be further
improved as the training set increases.

The rest of this article is organized as follows: In Sec-
tion 2, we describe the TRAPCOG design in detail. Section 3
introduces the overall evaluation of our system. Section 4
discusses the strength and weaknesses of our work, and we
also propose countermeasures. Section 5 surveys the related
work and Section 6 summarizes our work.

2 SYSTEM DESIGN

In this section, we first introduce the threat model and over-
all architecture of our implicit user authentication mecha-
nism for mobile devices, and then we discuss several key
points in its design, including data collection, data de-
noising, model construction, model training, and decision.

2.1 Threat Model and System Overview

Here, we give a living example to explain the threat model.
Let us suppose Alice and Trudy are friends. One day, Alice
forgot to turn off the screen of her smartphone when she
left the classroom. At this time, Trudy could check the
chat history of Instagram without the consent of Alice (i.e.,
Trudy was able to pick up Alice’s smartphone and open
the Instagram). In this case, the implicit user authentication
system running in the background can detect the access
of unauthorized users and then invoke the self-defense
strategies, such as launching an alarm, rendering an invalid
page, or requiring other authentication methods.

The architecture of TRAPCOG is shown in Figure 1. It
contains three phases as follows:

In the collection phase: After the device supplier signing
an agreement with a certain number of volunteers, the
target application deployed on mobile devices will collect
(the collection strategy will be introduced in Section 2.2)
and upload time-series data from motion sensors (i.e., ac-
celeration sensors, gyroscope sensors, and gravity sensors)
to the supplier’s cloud. Next, the data de-noising module
will be invoked for eliminating the influence of machine
abnormalities and man-made noises.

In the training phase: TRAPCOG will feed the uniformly
formatted time-series data to the siamese neural network
with LSTM as a sub-network for training. The trained model
(with the ability of transferable) will be stored in the cloud
to download for users who need authentication services.

In the authentication phase: Firstly, a new user should
download the trained model (with an application) provided
by the supplier to his/her smartphone and complete the ini-
tial data preservation stage (i.e., record his/her own human-
device interaction pattern). After that, once the user opens
applications (e.g., Instagram), the authentication process
will be invoked. The application needs to detect the duration
when the device is being actively used, because only the
sensor readings during such a duration are effective to rep-
resent user’s manner [2] (details in Section 2.2). The motion
sensor data will be automatically collected, processed, and
then passed into the trained model to compare with the user
owner’s sensor data. Finally, TRAPCOG will judge whether
the current user is legitimate by the pre-defined threshold.

In reality, TRAPCOG can be used as a third-part service
for implicit and accurate mobile user authentication in a
real-time manner. Other explicit authentication methods or
custom countermeasures can be leveraged if the authentica-
tion fails. We will describe the key components of TRAPCOG
in the following article.

2.2 Data Collection and Formatting

For data collection, the readings of motion sensors (i.e., the
acceleration sensor, the gyroscope sensor, and the gravity
sensor) are selected as our data source due to their privacy
insensitive (i.e., privacy-related permissions will not be in-
voked if the application wants to get the data from motion
sensors). Therefore, the data format has 9 dimensions, as
shown in Equation 1, where the subscripts a, gy, gr denote
the acceleration, gyroscope and gravity. K denotes a mo-
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Fig. 1. System architecture: Including data collection, data de-noising, model training on the server side, model transfering, and real-time
authentication on the user side. The information flow of volunteers during training phase is shown as a dashed line, and the information flow
of new users during actual usage phase is shown as a solid line. The active state lasts for 3s with a frequency of 50 Hz to collect data from 3
sensors in 9-dimensional format.

ment, and X, Y, Z denote the three axes of the target sensor,
respectively.

{Xa(K), Ya(K), Za(K),

Xgy(K), Ygy(K), Zgy(K),

Xgr(K), Ygr(K), Zgr(K)}
(1)

The collected data are from two places. As shown in
Figure 1, one is volunteers’ data for transferable model
training, the other is new users’ data for real-time authen-
tication. TRAPCOG has two collection states: the idle state
(the device screen is off or in a stationary state or no new
application is running in the foreground) and the active
state (the device screen is lightened and a new application
is opened in the foreground). Specifically, the collection will
only be enabled in the active state since only the sensor
readings during such a duration are effective to represent
the user’s human-device interaction patterns. To reduce the
battery consumption, we do not sample in the idle state and
set the sampling frequency to 50 Hz in the active state (a
new application is opened in the foreground and the device
is in a non-stationary state). In addition, the duration of the
data collection time is 3 seconds, which can best represent
the user’s human-computer interaction modality [2].

Finally, the data collected from each user are prepro-
cessed and formatted into the uniform style, i.e., data of
3s (150 instances) are evenly sliced into 3 equal-length data
segments of 1.5s (75 instances) with a 50% overlap. The
final data segments of all users are two-dimensional vectors
[R,C], where R represents the sum of the selected sensor
axes (9 in our system, i.e., 3 sensors, 3 axes per sensor),

and C represents the size of the formatted data segments
(75 instances in our system). Particularly, we use data to
represent data segments in data de-noising and model con-
struction/training. In addition, in the authentication phase,
TRAPCOG will judge whether the 3 data segments after
formatting are normal or not respectively, and determine
the legitimate users with majority rule.

2.3 Date De-noising
For datasets collected in non-laboratory environments and
applied to machine learning, the complex real-world scenar-
ios introduce horrible noise. According to our observations,
we can divide noisy data into two categories: machine abnor-
mality and man-made noise (mislabeling). As we know, the
noise in the dataset will significantly affect the performance
of the authentication. Therefore, it is very important for us to
adopt effective methods for the purpose of eliminating noise
and improving the final accuracy. Next, we will describe
how to eliminate them.

2.3.1 Machine Abnormality Filtering
This type of noise is caused by abnormal mobile device
sensors. In hardware level, the built-in motion sensors of the
mobile device will be affected by both internal factors (e.g.,
process, material, and design) and external factors (e.g.,
temperature, humidity, and service life). A certain deviation
exists between the direct reading of the sensor and the true
value, which is named machine abnormality. We identified
three main types of anomalies: Equal-Value abnormalities,
Jump-Point abnormalities and Zero-Value abnormalities.
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Specific definitions and solutions can be found in previous
studies [1, 2]. Note that this party is not the contribution of
TRAPCOG, and we just reuse previous methods and delete
these abnormalities in our experiment.

2.3.2 Man-made Noise Filtering
The man-made noise is caused by unrestricted human be-
havior during the data collection phase (i.e., data from
volunteers in Figure 1). Since suppliers do not have any
requirements for volunteers’ daily behaviors when using the
smartphone, it is necessary to train a robust model because
the collected data will obviously contain various complex
human-device interaction states. However, we consider the
following scenario: Bob is a volunteer from the supplier and
he participates in the data collection. One day, he lends his
smartphone to his friend Charlie temporarily. During this
period, the sensor data which is labeled as ”Bob” is still
uploading to the cloud. We call these part of data man-made
noise. The noisy label will inevitably cause a mismatch in
the training phase, thus affecting the final performance of
the model.

We utilize differential training [28] and optimize it to
reduce noisy labels. It is proven that the samples with true
labels have better alignment and more similar distribution
than the samples with random labels (or wrong labels),
as shown in Section 3.3.2 for specific experimental results.
Specifically, differential training will iteratively train two
deep learning models, which can be any deep learning
model of the same architecture. However, due to the binary
imbalance of the data, differential training cannot be used
directly, which requires to design and optimize solutions
according to data characteristics. Therefore, we construct a
label-balanced dataset by a heuristic solution to improve the
effectiveness of differential training. For detailed solution,
see the next paragraph (1) TD Construction. In our de-
noising phase, we use binary classification to detect the
noisy labels of each user. For each user, we treat the dataset
of the user owner as Class 1 and that of other users as Class
0. To train the first model, the dataset contains the whole
set of one selected user and data from some other users.
While for the second one, we make use of a randomly down-
sampled subset from the above dataset. For convenience, we
call the dataset in the first model Total Data (TD), and the
down-sampled subset as Subsample Data (SD). Similarly,
the corresponding noise detection models are TD model,
and SD model, respectively. Next, we will introduce how to
use differential training for our data de-noising task.
(1) TD Construction. Recall that differential training will
iteratively train two noise detection models. First, we should
determine how to construct TD. In the iterative process of
selecting users, let us suppose the currently selected user is
K . The binary classification task will meet two problems as
follows: 1) If we only take the data from user K for training,
the convergence speed of the noise detection model will be
too fast since all labels are 1, rendering the outlier detection
algorithms fail to pick up the noisy data in a short loss
vector (see step 3 Loss Vector Generation in (2) Detecting
Noisy Labels of differential training for details.). 2) If we
combine the data of K with all the data of other users as
the model input, the imbalanced dataset will tremendously
slow down the training speed. In order to solve the above

Data of Other User
Label 0

Data of User K
Label 1

User 1
User K-1

User K+1
User N

……… Other Users
（Excluding User K）

5 Parts Sorted
Data Segments

TD Dataset

Step 1
Merged and Sorted by ARSSA

Step 3
Extracted from Parts Randomly

All Sorted Data Segments
of Other Users

Step 2
Split to 5 Equal Parts (Continuous)

All Other User’s
Data Segments

……

Step 4
Mixing and Sort Randomly

Fig. 2. Stratified sampling: including ARSSA sorting, data splitting, data
extracting, and data mixing. In Step 1, we mix and sort all the users’
data segments except User K. In Step 2, we divide the sorted data into
5 equal parts. In Step 3, we randomly select subsample from these 5
parts. In step 4, we mix and disorder the 5 subsamples. The goal of
stratified sampling is to construct a positive-negative sample ratio of 1:1
dataset (TD) for user K.

problems, we use stratified sampling to meet the actual
needs of differential training, as shown in Figure 2. We sort
each data segment (from others) according to the average
root sum square of acceleration (ARSSA) which has the
highest fisher score [29]. We divide all sorted data segments
into 5 equal parts (continuous), and randomly extract the
same number of data segments from each part. Finally, we
get the TD where the ratio of the number of positive samples
to that of negative samples is 1:1.
(2) Detecting Noisy Labels. For each user/iteration, noisy
labels will be detected and deleted. The iteration contains
four steps including dataset down-sampling, training of TD
and SD models, loss vector generation and outlier detection,
as shown in Figure 3 and Algorithm 1.

• Step 1 Dataset Down-sampling. In step 1, the dif-
ferential training randomly down-samples the TD of
one user to form a smaller dataset SD. In our design,
the ratio of the selected SD from TD is 0.2, satisfying
the following requirement jointly [28]: 1) the size of
SD needs to be as small as possible, and 2) SD will
converge during the model training. Note that we
will have 5 (1/0.2) SDs to cover all the data in TD.

• Step 2 Training of TD and SD Models. In step
2, we will train the two noise detection models
“TD model” and “SD model” on the TD and SD,
respectively. As mentioned before, these two models
used in differential training can be any deep learning
networks (e.g., Recurrent Nural Network, Convolu-
tional Neural Network). In our system, considering
the character of time-series data, we choose LSTM
to detect noisy label. We refer the network structure
in the well-known work in human activity recogni-
tion [30]. The number of layers (layer = 2) and the
number of neurons in each layer are repeatedly used
(Neuron = 32), with sigmoid layer as the output. We
use the TensorFlow toolbox [31] to train two models,
where all other parameters are set to their default
values in the toolbox.
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Fig. 3. Detecting noisy labels includes dataset down-sampling, TD and
SD models training, loss vector generation and outlier detection. In the
loss vector generation stage, X is for the index of data segment, Y is for
the number of epochs, and Z is for the specific loss value. Note that the
concatenating in Step 3 only operates on the data fragments with label
1 in the SD data.

• Step 3 Loss Vector Generation. In step 3, we aim
to construct a loss vector for each data segment with
label 1 in SD data. To this end, we 1) for each data
segment in SD and TD, calculate the loss value for
each epoch (the element in deep learning), 2) for each
data segment in SD and TD, extract the loss values to
form a loss sequence according to different epochs, 3)
for each data segment with label 1 in SD, concatenate
the loss sequence in SD with the corresponding one
in TD to form a loss vector.

• Step 4 Outlier Detection. In step 4, a set of outlier de-
tection algorithms are applied to the all loss vectors.
For each data segment whose loss vector is detected
as an outlier, its label is considered as ”wrong” and
therefore it is likely to be deleted from the original
dataset. Besides, we also delete noisy data segments
with the probability equal to the dropout [32]. The
dropout ratio is set to 0.5 in our system.
Since most anomaly detection methods involve a
containment rate as a threshold for identifying out-
liers.. In our system, inspired by the method pro-
posed by Goldberger [33], the parameter contain-
ment of the outlier detection algorithm is set to
1−αTD, where αTD is the average accuracy from the
5-fold cross-validation on TD. In order to avoid any
deviation of the single outlier detection algorithm,
seven different outlier detection algorithms are used,
and a majority vote is performed to obtain the final
result of the outlier. With the help of the public

Algorithm 1 Detecting Noisy Labels by Differential Training
Input:
All users’ data are U , each user’s data are Ui
Initialization:
Subsample ratio.
Dropout ratio.
List V.

1: for Ui ∈ U do
2: construct dataset TDi by stratified sampling.
3: construct loss sequence Lt by training TDi model on

dataset TDi.
4: for j ∈ range (1//subsample ratio) do
5: SDj is TD′is (j + 1)th part.
6: construct loss sequence Ls by training SDj model

on dataset SDj .
7: for Dt ∈ SDj do
8: if Dt’s Label == 1 then
9: construct loss vector Vit, corresponding to Dt

from Lt.
10: construct loss vector Vjt, corresponding to Dt

from Ls.
11: construct loss vector Vt by concatenating Vit

and Vjt.
12: put Vt into V
13: end if
14: end for
15: Get noisy data by applying outlier detection algo-

rithms to V.
16: Delete noisy data from Ui with the probability equal

to Dropout ratio.
17: end for
18: end for

TABLE 2
List of outlier detection algorithms used in differential training.

Angle-based Outlier Detector (ABOD)
Clustering Based Local Outlier Factor (CBLOF)

Histogram-based Outlier Detection (HBOS)
IsolationForest Outlier Detector (I-forest)

k-Nearest Neighbors Detector (kNN)
Local Outlier Factor (LOF)

Principal Component Analysis Outlier Detector (PCA)

toolkit named “PyOD” [34], Table 2 shows outlier
detection algorithms used in our different training.
Moreover, we set an early stopping mechanism in
the training phase of noise detection models (i.e.,
the change of the loss value during the training
phase is less than the predefined threshold, 0.0001
in our experiment), which greatly reduces the time
required for differential training (the time of differ-
ential training in our system is reduced by 54%).
In experiments, we enforce the stopping criterion
through the API earlystop callback() from the Ten-
sorFlow toolkit, where all parameters are set to their
default values. Suppliers can adjust this threshold
dynamically according to their demand.
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2.4 Model Construction

Here, we construct a siamese neural network based on
LSTM and we call it Siamese Neural Network with LSTM as
Sub-Network. In this section, we will sequentially introduce
the advantages and shortcomings of the LSTM network
model, the siamese neural network with LSTM as a sub-
network, and the construction of the training set and model
training.

2.4.1 The Advantages and Shortcomings of Previous
LSTM Model
LSTM is a kind of recurrent neural network, which is spe-
cially designed to solve the long-term dependency problem
of general RNN. Meanwhile, binary classification has been
widely used in previous user authentication studies [2, 13]
since its ability for identifying accidental overlaps between
different users. However, regarding combining binary clas-
sification with the LSTM network, as described in the state-
of-the-art motion sensor based mobile user authentication
study [1], we will meet the following two disadvantages:

Firstly, in order to ensure the efficiency of model training,
and solve the problem of an imbalanced dataset, Zhu et
al. [1] tried to construct the training set in which the ratio of
the number of samples by user owner to that of other users
is 1:5. Unfortunately, the data utilization rate is less than
0.4% (the total number of users is 1513). Obviously, such
a low proportion of data utilization cannot fully cover the
complex and changeable human-device interaction patterns
in the real world. Secondly, when a new user wants to
use the implicit user authentication service, he/she needs
to upload a long period of time-series data to the server
for model training with extra overhead. In addition, it also
increases the leakage risk of the user’s personal data.

2.4.2 Siamese Neural Network with LSTM as a Sub-
network
Siamese neural network is based on the coupling frame-
work established by two neural networks [35]. The Siamese
neural network takes two samples as input and its two
sub-networks each receives an input and outputs the corre-
sponding representation embedded in the high-dimensional
space. The distance between the two representations, such
as Euclidean distance, is calculated to compare the similarity
of the two samples.

Siamese neural network is very good at handling the
issue where two inputs are ”similar”. A well trained siamese
neural network will maximize the representation of dif-
ferent labels and minimize the representation of the same
label [36]. Chorpa et al. [37] and Koch et al. [38] proposed
siamese neural networks to learn a function that maps the
input pattern to the target space so that the L1 norm in the
target space approximates the one in the input space ”se-
mantic” distance, and they implemented one-shot learning
on the Omniglot dataset [39] with the accuracy of about 92%
which was as good as human beings.

However, these studies are only valid for image data
and lack consideration of time-series data, which makes
it hard to apply in our scenario. Therefore, we redesigned
the architecture and chose LSTM as the sub-network of the
siamese neural network, utilizing the ability of processing

LSTM Net LSTM Net

Time Series Data X1 Time Series Data X2

Flattened Vector F1 Flattened Vector F2

Shared Weight

Distance D

Calculate L1-Distance

Dense(Relu)

Output(Sigmoid)

Confidence

Fig. 4. The siamese neural network architecture with LSTM as sub-
network.

time-series data and distinguishing difference, to maximize
the learning of behavior-sensitive time-series data. Since the
user’s behavior will be effectively represented by the time-
series data, we can use this data to identify the legitimate
user in real time.

Taking into account the specific application of our sys-
tem, we propose a new model architecture, which is shown
in Figure 4. Since the network structure is universal in
similar tasks [30], the number of layers (layer=2) and the
number of neurons per layer (neurons=32) are repeatedly
used in our system. At the same time, in order to couple
with the siamese neural network, the output layer of LSTM
was fine-tuned. Besides, the original output layer (softmax)
is changed to be a flattened layer, to output the stretched
vector for later distance calculation.

2.5 Model Training
To train the model, we divide the dataset into two parts. On
the total dataset of N people, we randomly select T users
as the train set, and M users are used as the test set. The
all data segments of each user have a uniform format so
that can be input into the model. The final data segments
of all users are two-dimensional vectors [R,C], where R
represents the sum of the selected sensor axes (9 in this
system, i.e., 3 sensors, 3 axes per sensor), and C represents
the size of the formatted data segments (75 in this system).
For each iteration, we select three data segments of the user
owner and one data segment of other users iteratively to
feed the siamese neural network. Furthermore, four data
segments are divided into two data pairs x1 and x2, the
labels of x1, and x2 are 1, and 0 respectively. Here, label 1
means that the two data segments belong to the same user,
and 0 is the opposite. In this way, we can 1) form a train
set with a positive-negative sample ratio of 1:1, and 2) make
full use of all datasets.

In the training phase, we input a pair of data segment
x1, x2 into the network, the data x1 enters the first siamese
neural sub-network and output vector h1, the data seg-
ment x2 corresponds to the output vector h2. Next, the
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TABLE 3
The details of our datasets; all participants were skilled smartphone
users with at least two years’ experience; P for participants; NL for

Noisy Label.

Dataset # of P Age Provider Phone Brands Duration NL
Dataset I 1513 20-60 Internet Company I XIAOMI 10 days Yes
Dataset II 8 20-30 Our Laboratory HUAWEI 1 day No
Dataset III 8 20-30 Our Laboratory XIAOMI 1 day No
Dataset IV 8 20-30 Our Laboratory MEI 1 day No
Dataset V 34 20-60 Internet Company II Samsung 14 days No

L1-distance D between two output vectors F1 and F2 is
calculated by the distance calculation formula as follows:
d =

(∑
j

∣∣∣hj1 − hj2∣∣∣). Here j = 0, 1, 2, ...J , J is the length of
the flattened vector. Finally, the L1-distance D is put into the
fully connected layer with the activation function of RELU
and the output layer with the activation function of Sigmoid
to obtain the model confidence value c = p

(
xi1, x

i
2

)
, where

function p represents in the i-th iteration model’s judgment
on the degree of similarity between the input x1 and x2, and
c is a decimal between 0 and 1.

2.6 Decision

We set a threshold parameter t (t is from 0 to 1) to help
authenticate. Users will be authenticated when c is greater
than or equal to t. Otherwise, the user will be rejected. Note
that the threshold t is adjustable. TRAPCOG can increase t if
it is necessary to reject illegal users more strictly. Decreasing
t means system is able to authenticate legal users with
higher accuracy. We set t = 0.5 in our experiment.

3 EVALUATION

3.1 Dataset and Metrics

As shown in Table 3, we collected 5 datasets for our eval-
uation. Dataset I was directly collected from 1513 users
through a large Internet company. Considering ethical risks,
the user agreement of this collection included the purpose
of this study. The sample frequency of motion sensors was
50HZ and the collection lasted for 10 days. Especially, IMEI
was used to label each user. However, we did not use it
directly but hashed it to protect the privacy of users. Besides
Dataset I, we also collected data. i.e., Dataset II, Dataset III,
Dataset IV, for mimic attacks in our laboratory (Section 3.5).
Finally, Dataset V is also the pure date collected by Internet
companyII to test de-noising ability of system. To eliminate
random errors, we repeated all experiments three times.

To evaluate our model, we use the following metrics.

• True Positive (TP): The authorized owner is correctly
identified.

• False Positive (FP): Other users are incorrectly iden-
tified as the authorized owner.

• False Negative (FN): The authorized owner is incor-
rectly identified as other users.

• True Negative (TN): Other users are correctly iden-
tified.

• Effectiveness The effectiveness contains True Posi-
tive Rate: TPR = TP/ (TP + FN), True Negative Rate:
TNR = TN/(TN+FP ) and Accuracy:Accuracy =
(TP + TN)/(TP + FP + FN + TN).

TABLE 4
All parameters and hyper-parameters in this work.

Differential
Training

Siamese With LSTM
as Sub-network

Deep Learning Model LSTM Deep Learning Model LSTM
# of Layers 2 # of Layers 2
# of Neuron 32 # of Neuron 32
Optimizer Adam Optimizer Adam

Learning Rate 0.0025 Learning Rate 0.0001
Batch Size 1 Batch Size 64

# of
Stratified Sampling 5 Split of Training

and Validation Set 8 : 2

# of Outlier
Detection Algorithms 7 Threshold t 0.5

Subsample Ratio 0.2
Dropout Ratio 0.5

• Overhead: Time consuming of the training phase on
the server and the authenticating phase on the user.

3.2 Hyper-parameters of Models
In this work, we first leverage the differential training to re-
duce the noisy data segments in the dataset. After that, with
the help of a siamese neural network, we improve the cover-
age of human-device interaction patterns and build a trans-
ferable model. Both the differential training and the siamese
neural network make use of LSTM as sub-networks. The
hyper-parameters of these models are essential to achieve
better effectiveness. The principle of hyper-parameter se-
lection is to reuse existing/well-trained parameters, and
then fine-tune these parameters by ourselves. Specifically,
we follow previous research to initially set these hyper-
parameters [1, 28, 38], and then use grid search to fine-
tune the parameters. Due to space limitations, the tuning
process of each parameter is not explained in detail here.
Besides, we argue that hyper-parameter fine-tuning is not
the most important part of our work because we would like
to propose a generic implicit real-time authentication system
rather than a set of specific hyper-parameters. To meet more
requirements in the wild, suppliers who use TRAPCOG can
fine-tune the hyper-parameters according to different de-
mands. We list all hyper-parameters in TRAPCOG in Table 4.

3.3 Effectiveness
With the above-mentioned hyper-parameters, to evaluate
the effectiveness of TRAPCOG, we will first demonstrate the
effectiveness of differential training and then compare the
overall effectiveness of TRAPCOG with other related work.

3.3.1 Construction of Training Set and Testing Set
We construct the training and testing sets on Dataset I
following two facts that a) the amount of data with which
a supplier can provide for training and the number of users
to be authenticated in the wild are unbalanced and b) the
latter will be much larger than the former. Therefore, in this
work, we will train TRAPCOG with different users (T=100,
200, 300, 400, and 500) and test TRAPCOG on (M=100, 200,
300, 400, and 500) users, respectively. The size of the training
set is 100 by default but we increase it gradually because
we would like to help suppliers to choose the appropriate
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Fig. 5. The changes of TPR, TNR, and ACC evaluated on the different sizes of testing sets by models trained from raw and denoised training sets
(T = 100, M=100, 200, 300, 400, and 500).
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Fig. 6. The changes of TPR, TNR, and ACC evaluated on the same testing set by models trained from different sizes of raw and denoised training
sets (T = 100, 200, 300, 400, and 500, M = 500).

amount of users in the training. The size of the testing set
is varied because we would like to simulate the process of
user increment.

3.3.2 Effect of Differential Training

Experiment I: Trained on Dataset I, Tested on Dataset I.
To evaluate the effect of the differential training, we first
train TRAPCOG on the raw training set and the de-noised
training set (T=100), respectively. We evaluate two models
on the same testing set (M=100, 200, 300, 400, and 500). As
shown in Figure 5, no matter what the size of the testing
size is, the TP, TN, and ACC of the denoised model are
all higher than the model trained with raw data. Second,
we train TRAPCOG on the raw and de-noised training set
with different users (T=100, 200, 300, 400, and 500) and
evaluate two models on the same testing set (M=100). The
results are shown in Figure 6. As the size of the training set
increases, the TPR, TNR, and ACC of the model are gradu-
ally increasing. Mostly, with a smaller number of users, the
accuracy improvement brought by the differential training
is greater. The possible reason is that the less training data,
the greater the impact of mislabeling on the model.Besides,
as the evaluation index approaches the maximum value of
100%, marginal effects exist.

We believe that if the size of the testing set is much larger
than the training set, the differential training will bring
greater improvement. Additionally, differential training has
a more obvious effect on the improvement of TPR, showing

its boost to the identification of legitimate users and the low
TP in the previous work [1]. This is because the differential
training is to help eliminate the data segments that do
not belong to a user. Based on the two experiences, we
can conclude that differential training can effectively solve
the mislabeling problem in the dataset and improve the
effectiveness of models.

Experiment II: Trained on Dataset V, Tested on Dataset
I. Besides, we conduct the experiment by adding noisy
labels to the pure dataset to demonstrate that differential
training outperforms previous related work [1, 2, 30]. In our
evaluation, we implement man-made noise addition (i.e.,
0% noisy data, 15% noisy data, and 30% noisy data) by
randomly adding the data of other users to the pure data
of target user, and compare the above datasets using four
different methods (including differential training), respec-
tively.The results of total test accuracy are shown in Table 5.
It should be noted that the model in this experiment is
trained on Dataset V (only 34 persons) and evaluated on
the test set (M=500).

From Table 5, we can see that differential training has
stronger de-noising ability than other related works. As
the ratio of noisy labels increases, the performance of dif-
ferential training is even better, which can even improve
the accuracy by nearly 4%. This result also confirms our
analysis above. Furthermore, differential training does not
require an additional clean dataset compared to the other
two methods [1, 2], which helps to reduce the overhead and
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Fig. 7. The figure of loss vectors generated in the differential training. Different subplots represent different users, and there are 8 loss vectors in
each subplot. The horizontal axis indicates the total number of epochs fitted by the user’s data segments in the training TD and SD model, and the
vertical axis indicates the loss value of a data segment during training. The red dashed line indicates the man-made noisy data, and the green solid
line indicates the pure data.

TABLE 5
The Overall Accuracy of Differential Training Compared With Other

Related Work on Dataset V. Where noise addition is adding man-made
noise, i.e. adding other users’ data to the pure data of one user.

Studies Dataset V Pure
Data

NeededOriginal 15%
noise

30%
noise

Baseline [30] 94.76% 90.11% 85.79% /
Semi-supervised

Learning [2] 94.72% 92.27% 87.20% Yes

Enhanced SGD
Algorithm [1] 94.92% 91.62% 87.73% Yes

Differential
Training 94.83% 93.07% 90.49% No

remove the reliance on additional datasets that may lead
bias.

Experiment III: Loss vector visualization. To visualize
the differences of the loss vectors obtained in the differential
training, we conducted experiments strictly following the
hyper-parameters in Section 3.2 and performed differential
training on four randomly selected users. We finally ob-
tained the loss vectors corresponding to all data segments
(353, 1991, 969, and 1502, respectively) one by one under
different users. It should be noted that the number of epochs
required to fit the TD model and SD model varies among

TABLE 6
The specific degree of the differential training to deal with the

mislabeling phenomenon of the training set.

# of
Users

# of Total Data
Fragments

Avg of Data
Fragments

# of Noisy
Labels

% of Noisy
Labels

100 93,728 937 4,708 5.02%
200 185,274 926 8,238 4.45%
300 278,302 927 13,064 4.69%
400 378,864 947 17,175 4.53%
500 482,889 965 21,429 4.44%

users, and therefore the dimension of vectors varies (10, 13,
13, and 14, respectively). We selected 8 loss vectors with
balanced positive and negative labels from each user, and
the results are shown in Figure 7. We can see that there is a
difference in the distribution of the loss vectors correspond-
ing to noisy and pure data. In addition, the distribution of
the loss vectors corresponding to the pure data is almost
same. Therefore, we can use the outlier detection algorithms
(Step 4 in Section 2.3.2) to identify and filter out the noisy
data segments for each user. It should be noted that a loss
vector is a concatenation of the loss values corresponding
one data segment in the training phase of TD and SD
models, so there will be a large jump value (e.g. epoch=4
in Figure 7(c)).

Finally, to detail the changes of the training set by the
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TABLE 7
The performance of TRAPCOG compared with previous related work; The coverage refers to the proportion of Dataset I used for training one
model; The effectiveness of transferability refers to the performance of the system on a dataset consisting of non-trainers; The data of users

needed refers to whether the system requires users to provide their own data to retrain the model or extract features for optimal performance.

Studies Accuracy Coverage
Offline

Verification
Letency

Effectiveness of
Transferability

Data of users
Needed

TRAPCOG TNR=99.55% TPR=98.97% 100% 3474ms TNR=99.55% TPR=98.97% No
Lee et al.(2017) 73-96% 0.06% 4000ms TNR=7.6-92.6% TPR=0% Yes

Buriro et al.(2017) TPR=96% EER=4% 0.06% NA TNR=4-96% TPR=4% Yes
Shen et al.(2018) TNR=94.97% TPR=96.02% 0.06% 8000ms TNR=5.03-94.97%% TPR=3.98% Yes
Zhu et al. (2019) TNR=98.89% TPR=81.41% 0.39% 3237.7ms TNR=1.01-98.89% TPR=18.59% Yes
Zhu et al. (2020) TNR=97.93% TPR=87.00% 0.39% 3124.6ms TNR=2.07-97.93% TPR=13.00% Yes

differential training, we list several numbers in Table 6. The
specific content of the table is the number of specific users in
the training set, the number of data segments, the average
number of each user’s data segments, the number of noisy
labels, and their proportion. In general, differential training
can reduce around 5% of noisy data segments upon our
dataset. Note that the specific number here is also calculated
by repeating this experiment three times.

3.3.3 Overall Effectiveness of TRAPCOG

We also compare the effectiveness of TRAPCOG with previ-
ous related work [1, 2, 12–14].

• Best Performance. We train TRAPCOG with 500 ran-
dom users and test it with 500 different users. Then
we use the obtained evaluation result as the best
performance indicator of this system. As for other
studies, due to the lack of datasets, we only list their
evaluation metrics, coverage and verification latency
here. The overall results are shown in Table 7. We
can see that both the TPR and TNR of TRAPCOG
are much higher than the previous ones. In addition,
since TRAPCOG has more parameters, the offline
verification latency is slightly longer than the lat-
est related work [1, 2]. However, the gap is only
within 350ms, an increase of less than 10%, which is
completely acceptable for users. In detail, TRAPCOG
combines the ability of LSTM to learn data and the
ability of the siamese neural network to judge the
similarity and difference of the data, which achieves
high accuracy.

• Transferability. Transferability means that the pre-
trained siamese neural network can be directly
shared and used by all users, without the need for
each user to train the model separately. As shown
in Table 7, the Effectiveness of Transferability of
TrapCog is much higher than existing work [1, 2,
12-14]. Consider above existing studies, we find that
if the model trained by user A is used directly for
other users (e.g., user B), the TPR will be extremely
low and the TNR will fluctuate greatly (it is not
difficult to see that when user B authenticates user
A with user A’s model, TNR is the lowest). The main
reason is that previous studies need to build a tar-
geted authentication model for each user, and their
models lack transferability. In addition, in order to
achieve a better authentication performance, existing
studies always require users to upload their own

sensor-sensitive data and re-extract features, which
increases the complexity of usage, the risk of data
exfiltration, and the overhead of service provider.
On the contrary, our system eliminates the need
for repeated training of the model for new users
in traditional methods by deploying a transferable
model that learns the ability to distinguish between
dual inputs. In short, our system does not require
users to upload sensitive data to the cloud, which
eliminates the problems of user inconvenience and
privacy leakage. To the best of our knowledge, this is
the first work to achieve robust transferability in dy-
namic biometric-based mobile user authentication.

3.4 Usability Analysis
In this section we will use third-party metrics to evalu-
ate the usability of TRAPCOG. Third-party metrics can be
divided into theoretical derivations [40–43] and question-
naires [44, 45], the latter being more suitable for evaluating
the usability of TRAPCOG. Therefore, we use Sample Acqui-
sition Time and System Usability Scale (SUS) [46] to perform
usability analysis.The former represents the system latency
on necessary data sampling, and the latter represents the
user’s quantitative assessment of system usability.

We invited 34 users from dataset V to take the SUS
questionnaire after using TrapCog for two weeks. It con-
tains 10 items (e.g., whether the user would like to use
it often, whether the user feels bothered) and users have
five response options ranging from strongly agree (score
10) to strongly disagree (score 0). Finally, we obtained the
performance of different authentication systems [1, 2, 47] on
sample acquisition time and SUS score as shown in Table 8.
We can see that in terms of sampling time, TrapCog belongs
to the first tier (3.5s), only 0.4 seconds behind the fastest
EspialCog (3.1s), which is perfectly acceptable. Moreover,
TrapCog is the only one to score over 90 on the SUS
score (91), outperforming existing mobile user authentica-
tion systems. After analyzing the results, we concluded that
users do not need to wait long time for the model training
compared to EspialCog [1] and RiskCog [2], and users do
not need to interact explicitly compared to Password, Voice
and Face [47], etc. Most users appreciate the usability and
effectiveness of TrapCog.

3.5 Security Analysis
In this section, we demonstrate the security of TRAPCOG in
terms of both mimic attacks and information entropy.
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TABLE 8
Sample acquisition time, SUS score for different authentication

systems. The range of SUS score is from 0 to 100.

Method Sample AcquisitionTime (s) SUS Score
TrapCog 3.5 91
RiskCog 3.2 87

EspialCog 3.1 84.5
Password 4.3 78

Voice 5.4 66
Face 3.9 75

Gesture 4.2 77
Face + Voice 5.3 46

Gesture + Voice 4.7 50

3.5.1 Resistance to Two Mimic Attacks

To attack implicit real-time authentication systems, a mali-
cious user would like to choose passive zero effort imposter
attacks and active imposter mimic attacks [48]. The former
is common in the wild because anyone can pick up one’s
smartphone and try to use it. To fight against this attack, the
well-trained model requires the ability to distinguish other
users from the owner of the smartphone. The effectiveness
of TRAPCOG described in Section 3.3 has demonstrated this
ability. Therefore, TRAPCOG can handle this attack. The
latter (mimic attacks) is more sophisticated and we will
analyze it in the following.

To simulate mimic attack in the wild, we first randomly
select one person as the victim and then ask remaining 7
person to observe victim’s human-device interaction pat-
terns for one day. Next, each person (one of remaining 7
person) tries to mimic the patterns of the victim for 60 times
(3 seconds each time). The dataset II, III, and IV in Table 3
gives the details about our mimic experiment. Note that
8 volunteers in this experiment did not participate in the
previous model training process, since TRAPCOG is transfer-
able, we only need to test the well-trained model mentioned
in Section 3.3 with the newly collected datasets and then
determine whether the model can correctly judge illegal
users in the datasets. To improve the reliability, we repeated
the above experiments on three different brands of mobile
phones. As shown in Table 12, TRAPCOG prevents mimic
attacks with the probability of more than 99%. Therefore, it
is difficult to bypass our authentication via mimic attacks.

3.5.2 Security from Information Entropy Perspective

In this section, we will compute the information entropy of
TRAPCOG and compare it with other mobile authentication
methods to demonstrate the security of our system from the
Information entropy perspective.

According to Shannon’s definition [49], information en-
tropy is a measurement of information uncertainty in a
space. We demonstrate the effectiveness of TRAPCOG on
authentication and resistance to attacks by calculating the
information entropy of the input space. As described in
Section 2.2, we finally obtain data segments in the format [R,
C], which are normalized to 10 decimal places of accuracy.
In addition, as described in Section 2.3.1, there are no jump
point abnormality in the data, so we consider the data to be
a high-dimensional continuous random variable. We decide
to estimate the information entropy by using the classical
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Fig. 8. The comparison figure of information entropy for different k
values. The horizontal coordinate indicates the different k values, the
vertical coordinate indicates the estimated information entropy, the red
dashed line indicates the change of information entropy, and the green
solid line indicates the mean value of information entropy.

KNN-Nearest Neighbor Estimator [50], which has been widely
used in various research problems.

Assume there are N i.i.d. D-dimensional samples
x1, ..., xN ∼ P , where the probability density function p
is unknown. The classical KNN estimator is written as:

H(X) ≈ ψ(N)− ψ(K) + log(cD) +
D

N

N∑
i=1

log(εi) (2)

where ψ denotes the digamma function, Γ denotes the
gamma function, εi denotes the Euclidean distance from xi,

to its nearest neighbor, cD = π
D
2

Γ(1+ D
2 )

.
We estimate information entropy on 480,000 data seg-

ments based on 500 users in Table 6 and perform a com-
parison experiment on parameter K (1-101) as shown in
Figure 8. We can see that the final mean value of information
entropy is obtained as 109.22, which is much higher than
other mobile authentication methods as shown in Table 9.
Therefore, we believe that TRAPCOG is sufficiently secure
from the perspective of information entropy.

3.6 Overhead
The deployment model of TRAPCOG is introduced in Sec-
tion 2.1. Here, we will present the overhead of the training
phase on the server and the overhead of the authentication
phase on the user.

3.6.1 Overhead on the Server
We train our model (TensorFlow) on a server equipped
with Intel(R) Core(TM) i9-10900X CPU and 128G mem-
ory running on Ubuntu 18.04. Table 10 lists the average
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TABLE 9
The comparison table of entropy calculated under different mobile

authentication methods.

Study Mobile Authentication
Method

Entropy
(bits)

TrapCog Gesture Authentication 109.22

Wang et al. [51] Chosen 4-digit PINs 8.41
Chosen 6-digit PINs 13.21

Wang et al. [52] Chosen Passwords 20-22
Inthavisas et al. [53] Voice Authentication 18-30

Feng et al. [54] Facial Authentication 75
Sadeghi et. al. [55] EEG Authentication 83

TABLE 10
The server overhead of the previous work and TRAPCOG under

different size of training sets; T means that the training set consists of T
users.

Studies T Training
Once Iterations Training

Util Convergence
ESPIALCOG [1] 6 3.13s 1500 1.3h

TRAPCOG 100 2,706.83s 23 17.3h
TRAPCOG 200 6,933.89s 19 36.6h
TRAPCOG 300 10,499.21s 19 55.4h
TRAPCOG 400 13,379.32s 22 81.8h
TRAPCOG 500 18,011.41s 30 150.1h

training overhead under different numbers of users with
GPU acceleration and comparison with the previous work
ESPIALCOG [1] (with GPU acceleration also). Using GPU
acclamation is reasonable because the model training is very
time-consuming in this work. Nowadays, the GPU accel-
eration service is common and without GPU acceleration,
the time-consuming task will be unacceptable. As shown in
Table 10, we can see that the one-time training of TRAPCOG
is much longer than that of the previous. That is because
TRAPCOG has a very high utilization rate of data, and the
amount of data that needs to be trained far exceeds the pre-
vious work. Moreover, the model’s complexity of TRAPCOG
is higher than that of the previous work. When it comes to
deploying TRAPCOG in the wild, the model can be trained
for only once since the transferability of TRAPCOG, the
supplier will be tolerant of the time-consuming training. In
the case of serial computing, as long as a few hundred users
require ESPIALCOG to train their models, the time will
exceed that of TRAPCOG. Even if the distributed computing
technology is used, once the number of users exceeds tens of
thousands, the training time of ESPIALCOG will far exceed
as well.

3.6.2 Overhead on the Client

On the user (Android smartphones), we also deploy Tensor-
Flow 1 for the authentication phase. As shown in Table 11,
we monitored battery consumption, CPU and memory us-
age during the idle state, the data collection state, and the
offline authentication state, respectively. The data indicate
that the overhead of the offline authentication state is the
highest, but this phase only lasts 3 seconds. Besides, it
should be noted that the power consumption is collected
by the participants using their mobile phones normally,
because our authentication system is not continuous but

1. Tensorflow. https://www.tensorflow.org/guide/saved model

heuristic (details in Section 2.2). Moreover, the battery re-
quired by our system in an hour is less than 1.5 percent.
Finally, the size of the uncompressed model in our system is
only 1.09MB , which is light enough to download and install
in smartphone. In short, these overheads have no effect on
the normal use of smartphones.

4 DISCUSSION

In this section, we will discuss the advantages and disad-
vantages of TRAPCOG.

4.1 The Advantages of TRAPCOG

High coverage of human-device interaction patterns,
strong transferability and privacy-preserving. We design
a LSTM based siamese neural network that can not only
make full use of all available data segments, but also ex-
pand the trainable data by generating time-series data pairs.
Moreover, it can reduce the cost of collecting training data,
and maximize the coverage of human-device interaction
patterns. Besides, the network has the ability to learn contex-
tual behaviors within the time-series data and distinguish
the similarity of input data pairs. This ability can eliminate
the time cost for uploading data to the cloud, protect the
privacy of user’s information, and significantly reduce the
computing cost of the supplier.
Strong de-noising ability. We use differential training to
reduce noisy labels. In the real-world scenario, the specific
behaviors of users during the data collection period cannot
be determined, which will undoubtedly affect the accuracy
of the final model. To solve this problem, we utilize differ-
ential training, which is fully automated in the process of
label de-noising and does not require domain knowledge
or manual inspection. In addition, it does not rely on any
additional datasets with correct labels.
High accuracy. TRAPCOG can perform real-time mobile user
authentication in a large scale real-world noisy dataset with
high accuracy. The evaluation results indicator that the TPR
and TNR of our system are much higher than the previous
studies. In particular, the significant lead of TPR indicates
that our system has solved the usability problem (false
negative) caused by previous work.

4.2 The Weaknesses of TRAPCOG and Future Work
Firstly, although new users do not need to upload data to the
cloud, users still need to provide their own data in advance
for subsequent comparison in the mobile side. In this article,
we do not describe in detail how to ensure that the data
stored in the mobile device are not illegally tampered with
during the initial use stage. In fact, we can collect data
in the initial phase with the help of other authentication
methods, and store the collected data into a secure area of
the smartphone, such as TrustZone.

Secondly, no detailed experiment is carried out for the
problem that the change of the human-device interaction
mode of the same user at different times may lead to
the inability to correctly authenticate legitimate users. In
other words, further experiments are needed to explore the
performance of the model over a longer time span (i.e., one
month or more).
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TABLE 11
The overhead results on four different smartphones; the measurements of CPU and memory are averaged over 1000 times of authentications.; the

measurement of battery consumption lasts for five hours.

Phone Brands Idle State Data Collection Offline Authentication Battery Consumption
(mAh)CPU(%) Memory(MB) CPU(%) Memory(MB) CPU(%) Memory(MB)

IQOO Neo5 0.4 1.3 1.9 15.5 13.0 88.3 304.9/4400
Mate 40 0.2 0.7 1.7 14.1 10.9 82.4 295.6/4200
MI 10 0.6 1.9 2.6 16.8 14.1 90.6 337.8/4780

Samsung S21 0.5 1.8 2.1 16.3 12.7 79.9 287.2/4000

TABLE 12
TRAPCOG’s resistance to mimic attacks under different smartphone

brands.

Dataset Phone Brands TNR
Dataset II HUAWEI 99.78%
Dataset III XIAOMI 99.84%
Dataset IV MEI 99.16%

Thirdly, TRAPCOG can not accurately authenticate users
on mobile devices in stationary state where sensor data re-
mains unchanged. In such circumstances, we suggest resort-
ing to traditional authentication methods (e.g., fingerprint
authentication and face authentication) as a supplementary
measure. Furthermore, we propose that incorporating data
from finger swipes or screen pressure can surmount the
limitations of TRAPCOG in this usage scenario.

5 RELATED WORK

In this section, we will introduce related work in implicit
authentication and compare it with TRAPCOG. The specific
comparison aspects include human-device interaction pat-
tern coverage, data de-noising ability, and model transfer-
ability, which reflects the advantages of our work.

• Improve the coverage of human-device interaction
patterns. The traditional data collection method is to
invite participants to provide sensor data in certain
specific situations, such as walking [3–5, 7, 9, 10],
going up/down stairs [4], picking up a mobile de-
vice [6, 12] and touching the screen of the mobile
device [11, 13, 14]. Both the number and complexity
of the human-device interaction modes in the real
world far exceed the data collected from a laboratory.
Therefore, the model obtained with these limited
data will not meet the practicality of implicit real-
time authentication in the wild. In the work of Zhu
et al. [1, 2], a large dataset of thousands of people
was collected. However, its model could just use the
data of only 6 persons in the dataset and was limited
with the imbalance problem of binary classifications.
Therefore, although the user behavior is no longer
restricted when collecting data, the model’s narrow
coverage of patterns and low data utilization is still
the barriers before the deployment of such systems in
the wild. The LSTM-based siamese neural networks
proposed in this work can solve this problem and use
all the collected data. That is to say, it can cover the
complex and changeable human-device interaction
patterns making TRAPCOG feasible to be deployed
in the wild.

• Solve the reduction of man-made noises. Most
previous researches on user authentication based on
motion sensors has rarely considered the influence of
the noisy data [3–14]. In other words, they all believe
that the collected data is pure and representative
of the user. However, the data collected by mobile
devices in the real world will have various noises.
Zhu et al. [1] observed data abnormalities caused by
various hardware problems in the real dataset, and
divided them into equal-value abnormalities, jump-
point abnormalities, and zero-value abnormalities. In
addition, for man-made mislabeling problems, they
adopted a semi-supervised learning method and
an enhanced SGD algorithm. However the former
required a pure dataset and the latter performed
poorly. We instead use differential training to reduce
the noisy data and achieved a promising improve-
ment in model evaluation.

• Realize the transferability of the model and the
privacy protection of users. Within the scope of
our investigation, although this is a real problem,
none of the work mentioned this aspect [3–14, 56–
61]. At present, almost all implicit real-time user
authentication systems train one model for one user.
The trained model has good TPR and TNR only for
specific user. Therefore, suppliers need to separately
train and provide customized models for each user.
The biggest problem with this approach is that the
high cost and leakage of privacy. When the implicit
user authentication service is open to the public, it
is necessary to train and save the model separately
for hundreds of thousands of users. At this time, the
cloud computing cost and the hardware cost required
to save the model are extremely expensive. In ad-
dition, the user needs to provide its data to train a
model for others, which causes privacy leakage. Our
system is different from previous work that focuses
on classifying the owner to any others. TRAPCOG
will first collect training data from volunteers and
train a transferable model. Then, suppliers can push
this model to users. The data of each user will be
saved locally because it will not be used in the model
of other users. Our model is transferable and can
protect the privacy of users.

6 CONCLUSION

In this paper, we propose TRAPCOG that uses a siamese
neural network based on LSTM to perform implicit real-time
mobile user authentication. TRAPCOG is different from pre-
vious studies where data de-noising is not enough, human-
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device interaction patterns coverage is insufficient, models
are not transferable, and user privacy is not well protected.
We solve the problem of mislabeling by differential training
based on down-sampling and make full use of the dataset
to maximize the coverage of the real-world human-device
interaction patterns by a siamese neural network with LSTM
as sub-networks. At the same time, since the model has
the ability to distinguish the degree of similarity of the
input, we realize the transferability of the model. Under
this circumstance, users only need to deploy our system
and authenticate locally on the user. This architecture can
protect the privacy of users because no private data should
be uploaded. In addition, TRAPCOG has extremely high
effectiveness and accuracy. The experimental results on a
large and noisy dataset show that our system obtains 98.97%
TPR, 99.55% TNR, and 99.26% authentication accuracy, far
exceeding existing studies. The results also show that the
accuracy is still rising with the increase of the training set.
Finally, TRAPCOG also has excellent resistance to mimic
attacks with a recognition rate of over 99%. Therefore
TRAPCOG outperforms latest studies and meets the require-
ments of security, privacy, and usability in mobile user
authentication, which is feasible to deploy in the wild.
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[11] Z. Sitová, J. Šeděnka, Q. Yang, G. Peng, G. Zhou,
P. Gasti, and K. S. Balagani, “Hmog: New behav-
ioral biometric features for continuous authentication
of smartphone users,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 5, pp. 877–892, 2015.

[12] W.-H. Lee, X. Liu, Y. Shen, H. Jin, and R. B. Lee, “Secure
pick up: Implicit authentication when you start using
the smartphone,” in Proceedings of the 22nd ACM on
Symposium on Access Control Models and Technologies,
2017, pp. 67–78.

[13] A. Buriro, B. Crispo, and Y. Zhauniarovich, “Please
hold on: Unobtrusive user authentication using smart-
phone’s built-in sensors,” in 2017 IEEE International
Conference on Identity, Security and Behavior Analysis
(ISBA). IEEE, 2017, pp. 1–8.

[14] C. Shen, Y. Li, Y. Chen, X. Guan, and R. A. Maxion,
“Performance analysis of multi-motion sensor behavior
for active smartphone authentication,” IEEE Transac-
tions on Information Forensics and Security, vol. 13, no. 1,
pp. 48–62, 2017.

[15] Z. Zhao, G.-J. Ahn, and H. Hu, “Picture gesture authen-
tication: Empirical analysis, automated attacks, and
scheme evaluation,” ACM Transactions on Information
and System Security (TISSEC), vol. 17, no. 4, pp. 1–37,
2015.

[16] D. Nyang, A. Mohaisen, and J. Kang, “Keylogging-
resistant visual authentication protocols,” IEEE Trans-
actions on Mobile Computing, vol. 13, no. 11, pp. 2566–
2579, 2014.

[17] N. H. Zakaria, D. Griffiths, S. Brostoff, and J. Yan,
“Shoulder surfing defence for recall-based graphical
passwords,” in Proceedings of the seventh symposium on
usable privacy and security, 2011, pp. 1–12.

[18] D. Nyang, H. Kim, W. Lee, S.-b. Kang, G. Cho, M.-K.
Lee, and A. Mohaisen, “Two-thumbs-up: Physical pro-
tection for pin entry secure against recording attacks,”
computers & security, vol. 78, pp. 1–15, 2018.

[19] A. De Luca, A. Hang, F. Brudy, C. Lindner, and
H. Hussmann, “Touch me once and i know it’s you! im-
plicit authentication based on touch screen patterns,” in
proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 2012, pp. 987–996.

[20] N. L. Clarke and S. M. Furnell, “Authentication of
users on mobile telephones–a survey of attitudes and
practices,” Computers & Security, vol. 24, no. 7, pp. 519–
527, 2005.

[21] R. Amin, T. Gaber, G. ElTaweel, and A. E. Hassanien,
“Biometric and traditional mobile authentication tech-
niques: Overviews and open issues,” in Bio-inspiring
cyber security and cloud services: trends and innovations.
Springer, 2014, pp. 423–446.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3265071

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 16,2023 at 09:07:45 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. YY, MONTH 2022 16

[22] H. Crawford and K. Renaud, “Understanding user
perceptions of transparent authentication on a mobile
device,” Journal of Trust Management, vol. 1, no. 1, pp.
1–28, 2014.

[23] T. J. Neal and D. L. Woodard, “Surveying biometric
authentication for mobile device security,” Journal of
Pattern Recognition Research, vol. 1, no. 74-110, p. 4, 2016.

[24] H. Khan and U. Hengartner, “Towards application-
centric implicit authentication on smartphones,” in
Proceedings of the 15th Workshop on Mobile Computing
Systems and Applications, 2014, pp. 1–6.

[25] C. A. Miles and J. P. Cohn, “Tracking prisoners in
jail with biometrics: An experiment in a navy brig,”
National Institute of Justice Journal, vol. 253, 2006.

[26] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei,
“Mentornet: Learning data-driven curriculum for very
deep neural networks on corrupted labels,” in Interna-
tional Conference on Machine Learning. PMLR, 2018, pp.
2304–2313.

[27] Y. Li, J. Yang, Y. Song, L. Cao, J. Luo, and L.-J. Li,
“Learning from noisy labels with distillation,” in Pro-
ceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 1910–1918.

[28] J. Xu, Y. Li, and R. H. Deng, “Differential training: A
generic framework to reduce label noises for android
malware detection,” in Proceedings 2021 Network and
Distributed System Security Symposium. Internet Society,
2021, pp. 1–14.

[29] J. E. Trost, “Statistically nonrepresentative stratified
sampling: A sampling technique for qualitative stud-
ies,” Qualitative sociology, vol. 9, no. 1, pp. 54–57, 1986.

[30] G. Chevalier, “Lstms for human activity recogni-
tion,” 2016, https://github.com/guillaume-chevalier/
LSTM-Human-Activity-Recognition.

[31] “TensorFlow,” https://www.tensorflow.org/api
docs/python/tf/keras/callbacks/EarlyStopping.

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, “Dropout: a simple way to pre-
vent neural networks from overfitting,” The journal of
machine learning research, vol. 15, no. 1, pp. 1929–1958,
2014.

[33] J. Goldberger and E. Ben-Reuven, “Training deep
neural-networks using a noise adaptation layer,” 2016.

[34] “PyOD,” https://pyod.readthedocs.io/en/latest/.
[35] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and
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