
The Art, Science, and Engineering of Fuzzing: 
A Survey

Valentin J.M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele,
Edward J. Schwartz, and Maverick Woo

Fuzzing: Hack, Art, and Science*
Patrice Godefroid

Qiang Liu



Motivation

Vibrant Fuzzing Community

● Over a thousand public repos related to fuzzing on GitHub
● 112 fuzzers (big-4 security cons and three SE cons, from 08 to 19)
● 78 fuzzing related papers (from 20 to 21)

However

● Less description than source code and manual page -> Lose tracks
● Terminology fragmentation -> Hinder knowledge progress

○ AFL: test case minimization, funfuzz: test case reduction

3

We need to consolidate and distill the large amount of progress in fuzzing!



Outline

Three Parts

● Fuzzing Terminology
● A unified Fuzzing Model
● Stages in Fuzz Testing

○ Design Choices
○ Trade-offs

4



Fuzzing Terminology

PUT: Program Under Test

Definitions

● Fuzzing: Fuzzing is the execution of the PUT using input(s) sampled from an input 
space that protrudes the expected input space of the PUT.

● Fuzz Testing: The use of fuzzing to test if a PUT violates a correctness policy.
● Fuzzer: A program that performs fuzz testing on a PUT.
● Fuzz Campaign: A specific execution of a fuzzer with a specific correctness policy.
● Bug Oracle: A bug oracle is a program, perhaps as part of a fuzzer, that 

determines whether a given execution of the PUT violates a specific correctness 
policy. 

● Fuzz Configuration: A fuzz configuration of a fuzz algorithm comprises the 
parameter value(s) that control(s) the fuzz algorithm.

5



Two parts

● Preprocess
● Fuzz Loop

Fuzzers

● Black-box Fuzzer (B)
● Grey-box Fuzzer (G)
● White-box Fuzzer (W)

Model Fuzzer

6

B G W

Input/Output Y Y Y

Internals N P Y

Execution Feedback N P Y



Preprocess

Instrumentation

Seed Selection

Seed Trimming

Driver Application

● Hard to directly fuzz
● Manual and one-time effort

○ FuzzGen (Sec’20)
○ WINNE (NDSS’21)
○ APICraft (Sec’21)

● Diverse in implementation

10



Usage Scenarios

● Execution Feedback
○ BitMap: Direct -> Colliding

● Thread Scheduling
○ Romdon Scheduling: Effective

Preprocess Cont’d

11

Design Choices Semantics Level Overhead Library

Static Instrumentation Source Code, IR, Binary Low Separate

Dynamic Instrumentation Binary High Unified

● In-Memory Fuzzing
○ Snapshots/Fork server
○ In-Memory API Fuzzing

■ AFL Persistent Mode: Not 
Reproducible

■ Delta Debugging (ViDeZZo)

Instrumentation



Preprocess Cont’d

Seed Selection

● Minset: find a minimal set of 
seeds that maximizes a coverage 
metric

● Coverage metric

12

Coverage Metric Preference

AFL branch cov with 
logarithmic counter

differ in orders of 
magnitude

Honggfuzz # instr, # BB, # 
branch

longer executions

Intuition

AFL code coverage

USec’14 smaller size

MoonShine dependency

Seed Trimming

● Smaller seeds: less memory 
and higher throughput

● Different intuitions

Both of them can be in 
ConfUpdate



Fuzz Configuration Scheduling (FCS) Problem

● Optimization: # bugs, coverage
● Confliction: exploration v.s. exploitation

Line 4: C with new information

Black-box FCS Algorithm

● # of crashes and # of runs
● Probability Theory

Grey-box FCS Algorithm

● Richer coverage
● Evolutionary Algorithm: Fitness

Schedule

13



Schedule Cont’d

AFL

● Fastest and Smallest

AFLFast: FAST power schedule

● Start with a small “energy” value to ensure initial exploration among 
configurations and increase exponentially up to a limit to quickly ensure 
sufficient exploitation

● Normalize the energy by the number of generated inputs that exercise the 
same path, thus promoting explorations of less-frequently fuzzed 
configurations

AFLGo

● Target specific program locations
14



Input Generation

15

Model-based
(Generation)

Predefined Model specs: tool-specific, grammar, protocol, syscall, file 
format

Inferred Model* preprocessing binary, seeds, API logs, …

configuration updating kinds of dynamic behaviors

Encoder Model MutaGen: Mutate the encoder program.

Model-less
(Mutation)

Bit-Flipping # bits to flip; each PUT has a specific mutation ratio.

Arithmetic Mutation integer i: i +/- r

Block-based Mutation block: add, append, delete, replace, shuffle, crossover

Dictionary-based Mutation “ELF\x00”

*How to automate the generation of input grammars for complex formats, perhaps using 
machine learning, is another challenge.



Input Generation Cont’d

White-box Fuzzers

16

Dynamic Symbolic Execution Expensive* specify uninterested parts of a PUT

alternate between concolic testing and grey-box fuzzing

Guided Fuzzing: costly program analysis + 
test case generation

hot bytes, control/data flow features

PUT Mutation: change PUT and recover checksum, branches

* How to engineer exhaustive symbolic testing (that is, a form of verification) in a cost-
effective manner is still an open problem for large applications.



Input Evaluation

Bug Oracles

● Fatal Signals -> Sanitizers
● Memory and Type Safety (ASAN)

○ spatial and temporal memory safety, control flow integrity

● Undefined Behaviors (MSAN, UBSAN, TSAN)
○ uninitialized memory, misaligned pointers, division by zero, dereferencing null pointers, 

and integer overflow, data races

● Others
○ Input Validation: manually specific patterns: XSS, SQL injection
○ Semantic Difference: differential testing: semantic bugs

Execution Optimization

● Fork-server, In-memory Fuzzing, In-memory API Fuzzing
17



Input Evaluation Cont’d

Triage

● Deduplication
○ Stack Backtrace Hashing

■ widely used 
■ but “some crashes do not occur near the code that caused the crash“

○ Coverage-based Deduplication

■ “the crash covered a previously unseen edge”
○ Semantic-aware Deduplication

■ “root cause analysis”
● Prioritization

○ Exploitability
● Minimization

○ Delta-debugging, C-Reduced
18



Configuration Updating

Most black-box fuzzers don’t update configurations

White-box fuzzers generate conf for each test case.

Evolutionary Seed Pool Update

● Fitness function: node or branch cov
● Refined fitness function

○ AFL: # taken branches
○ VUzzer: weights of BB

Maintaining a Minset

● Avoid creating too many confs
● Variants:

○ Completely remove useless configurations
○ A culling procedure to mark minset configurations as being favorable

19



Conclusion

Summary

● Rich taxonomy
● A general purpose model fuzzer
● Design decisions in each stage

Hopefully help bring some more uniformity to future works, particularly in 
the terminology and in the presentation of fuzzing algorithms



Discussion

Questions in presentation?

When can/should we do a survey paper?

What are the generic steps to do a survey paper?

Some new directions?

21



Discussion

New papers since 2020: https://wcventure.github.io/FuzzingPaper/

● Speed
○ Towards Systematic and Dynamic Task Allocation for Collaborative Parallel Fuzzing (ASE’21)
○ Hardware Support to Improve Fuzzing Performance and Precision (CCS’21)

● Benchmark
○ FuzzBench: An Open Fuzzer Benchmarking Platform and Service (FSE’21)

● New feedback
○ The Use of Likely Invariants as Feedback for Fuzzers (USec’21)
○ IJON: Exploring Deep State Spaces via Fuzzing (SP’20)
○ SAVIOR: Towards Bug-Driven Hybrid Testing (SP’20)

● Emerging PUTs
○ compiler, interpreter, database, library, kernel, Hypervisor, firmware, RTL design
○ distributed systems
○ commits

https://wcventure.github.io/FuzzingPaper/

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

