

FirmGuide: Boosting the Capability of Rehosting Embedded Linux Kernels through Model-Guided Kernel Execution

Qiang Liu^{1*} Cen Zhang^{2*} Lin Ma¹ Muhui Jiang^{1,3} Yajin Zhou¹ Lei Wu¹ Wenbo Shen¹ Xiapu Luo³ Yang Liu² Kui Ren¹

¹Zhejiang University ²Nanyang Technological University ³The Hong Kong Polytechnic University

*The first two authors contributed equally to this work.

ASE2021

Motivation

- Linux kernel with drivers inside high-end embedded firmware
- Understanding and testing abilities not easily and scalably due to hardware requirement
- Rehosting the embedded Linux kernel with the best effort

Challenge and Observation 1

SoC: plxtech,nas782	X			
CPU	Arm11MPCore			
Memory	up to 512M			
Interrupt Controller	gic	High fidelity to make the Linux kernel functional-correct		
Time-related	rps, oscillator, sysclk, plla, pllb, stdclk, twdclk			
UART	ns16550a			
Others	gmacclk, pcie, watchdog, sata, nand, ethernet, ehci, leds	Low fidelity for successful boot		
High-fidelity Virtual Device				
• Numerous peripherals: Type-I High Fidelity Type-II Low Fidelity — Dummy Virtual Device				

• Classifying peripherals for a minimum best effort

Challenge and Observation 2

Multiple models for interrupt controllers ralink-rt2880-intc qca,ar7240-intc marvell,orion-intc marvell,orion-bridge-intc arm,cortex-a9-gic

. . .

- *Diverse models*: Linux subsystems that hide implementation details
- Extracting state machines from the Linux subsystems (Type-I)

Challenge and Observation 3

- *Complex semantics*: Specific driver interface callbacks that embed complex semantics
- Extracting MMIO R/W sequences

Core Technique: Model-guided Kernel Execution

• Peripheral model = the model template (a state machine) + the model parameters (MMIO R/W sequences as transition conditions)

Model-guided Kernel Execution: Methodology

• We semi-automatically build the state machine of each peripheral: a general model template (manually) plus model parameters (automatically)

System Design and Implementation

LLVM pass for preprocess KLEE for MMIO R/W Seq Python for glues

Python for main logic Template-render pattern

Evaluation

RQ 1: What peripheral models can we generate?

Type I

Family of SoCs	Interrupt Controller	Timer	First Solution (Second)	Exists CSVF (y/n)	Timer Semantics
ramips/rt305x	ralink-rt2880-intc	not necessary	1	n	-
ath79/generic	qca,ar7240-intc	not necessary	5	n	-
kirkwood/generic	marvell,orion-intc marvell,orion-bridge-intc	marvell,orion-timer	2	У	y=~x
bcm53xx/generic	arm,cortex-a9-gic	arm,cortex-a9-global-timer arm,cortex-a9-twd-timer	2,207	У	y=x1<<32+x2
oxnas/generic	arm,arm11mp-gic	plxtech,nas782x-rps-timer	914	У	y=x

Type II: # of initial values/# of Type II peripherals

Family of SoCs	ramips/rt305x	ath79/generic	kirkwood/generic	bcm53xx/generic	oxnas/generic
count	1/10	2/15	3/26	2/4	2/9

Evaluation

RQ 2: What embedded Linux kernels can we rehost?

Subtarget	Unpack	Kernel	User Space	Shell
ramips/rt3050	4784	4784	4743 (99.14%)	4345 (90.80%)
ath79/generic	541	541	444 (82.07%)	444 (82.07%)
bcm53xx/generic	388	388	388 (100.00%)	388 (100.00%)
kirkwood/generic	330	326	324 (99.39%)	244 (74.85%)
oxnas/generic	149	149	48^ (32.21%)	48^ (32.21 %)
Overall	6192	6188	5947 (96.11%)	5469 (88.38%)

Given 6K+ firmware crossing 10 vendors, 3 architectures, and 22 Linux kernel versions, FirmGuide can successfully rehost more than 96% of them.

^The successful rate to support oxnas/generic is low because it cannot recognize our ramfs due to a unset flag.

Evaluation

RQ 3: What about the functionality of the rehosted embedded Linux kernels?

Linux Test Project: Syscall Testing

Models	Pass	Skipped	Failed	Total
Fully Generated	1049	164	46	1259
Ground Truth	1049	164	46	1259

RQ 4: What are application of FirmGuide? CVE Reproduction and Exploit Development

CVE ID	CVE Type	Triggering	Exploitation
CVE-2016-5195	Race Condition	Ν	Ν
CVE-2016-8655	Race Condition	Yes	Y
CVE-2016-9793	Integer Overflow	Y	N
CVE-2017-7038	Integer Overflow	Y	Y
CVD-2017-1000112	Buffer Overflow	Y	Y
CVE-2018-5333	NULL Pointer Dereference	Y	Y

Fuzzing

run time : 0 days, 0 hrs, 5 m	nin, 24 sec overall results	
last new path : 0 days, 0 hrs, 0 m last unig crash : none seen yet last unig hang : none seen yet	uin, 25 sec total paths : 15 uniq crashes : 0 uniq hangs : 0	
- cycle progress now processing : 14.0 (93.3%) paths timed out : 0 (0.00%)	map coverage map density : 0.02% / 0.02% count coverage : 1.00 bits/tuple finding inducts	
now trying : havoc stage execs : 8118/16.4k (49.55%) total execs : 159k	favored paths : 4 (26.67%) new edges on : 5 (33.33%) total crashes : 0 (0 unique)	
exec speed : 491.8/sec - fuzzing strategy yields	total tmouts : 0 (0 unique) path geometry	
bit flips : 0/32, 0/31, 0/29 byte flips : 0/4, 0/3, 0/1 arithmetics : 0/224, 0/0, 0/0	pending : 1 pend fav : 1	
known ints : 0/26, 0/84, 0/44 dictionary : 0/0, 0/0, 0/2 havoc/rad : 1/65.5k, 0/85.2k, 0/0	own finds : 1 imported : 0 stability : 100.00%	
py/custom : 0/0, 0/0 trim : 78.72%/19, 0.00%	[cpu002: 15%]	

UnicoreFuzz

american fuzzy lop 2.06b (triforcafl	.)	
lq process timing qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq	overall resu	ilts qqqqqk
x run time : 0 days, 0 hrs, 6 min, 7 sec x	cycles done	:0 x
x last new path : 0 days, 0 hrs, 0 min, 30 sec x	total paths	: 413 x
x last uniq crash : none seen yet x	uniq crashes	:0 x
x last uniq hang : 0 days, 0 hrs, 1 min, 0 sec x	unig hangs	:6 x
tq cycle progress qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq	qqqqqqqqqqqqqqq	addadadada
x now processing : 0 (0.00%) x map density :	14.8k (0.70%)	X
x paths timed out : 0 (0.00%) x count coverage :	1.31 bits/tup	ole x
tq stage progress qqqqqqqqqqqqqqqqqqqqqqqqqqqt findings in dept	h qqqqqqqqqqqq	rddddddddd
x now trying : havoc x favored paths : 2	98 (72.15%)	x
x stage execs : 7715/32.0k (24.11%) x new edges on : 3	50 (84.75%)	x
x total execs : 12.5k x total crashes : 0	(0 unique)	x
x exec speed : 47.71/sec (slow!) x total hangs : 1	0 (6 unique)	x
to fuzzing strategy yields agggggggggggggggggggggggggggggggggggg	path geometry	aaaaaaaaa
x bit flips : 6/32, 3/31, 2/29 x	levels : 2	x
x byte flips : 0/4, 0/3, 0/1 x	pending : 41	L3 X
x arithmetics : 10/224, 0/204, 0/68 x	pend fav : 25	98 x
x known ints : 1/8, 0/18, 0/10 x o	wn finds : 60) x
x dictionary : 0/0, 0/0, 0/0 x	imported : 0	×
x havoc : 0/0, 0/0 x	variable : 0	x
x trim: 92.86%/13, 0.00% tag	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	aaaaaaaaai
maaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	[pu: 14%]

TriforceAFL

Conclusion

A novel technique "Model-Guided Kernel Execution" for peripheral modeling

The first semi-automatic framework for embedded Linux kernel rehosting

Feasible dynamically understanding and mining vulnerability in embedded kernels

Discussion

Limitation and future work

Manual state machine construction for more complex peripherals

High fidelity of Type-II peripherals

Q & A

qiangliu@zju.edu.cn, cen001@e.ntu.edu.sg