
 FirmGuide: Boosting the Capability of Rehosting
Embedded Linux Kernels through Model-Guided Kernel

Execution

 FirmGuide: Boosting the Capability of Rehosting
Embedded Linux Kernels through Model-Guided Kernel

Execution

Qiang Liu1* Cen Zhang2* Lin Ma1 Muhui Jiang1,3 Yajin Zhou1 Lei Wu1 Wenbo Shen1 Xiapu Luo3
Yang Liu2 Kui Ren1

1Zhejiang University 2Nanyang Technological University 3The Hong Kong Polytechnic
University

*The first two authors contributed equally to this work. ASE2021

MotivationMotivation

• Linux kernel with drivers inside high-end embedded firmware
• Understanding and testing abilities not easily and scalably due to hardware requirement
• Rehosting the embedded Linux kernel with the best effort

Dynamic Bug
or Vulnerability
Understanding

Dynamic Bug or
Vulnerability

Mining

Challenge and Observation 1Challenge and Observation 1

• Numerous peripherals: Type-I Type-II

• Classifying peripherals for a minimum best effort
High Fidelity Low Fidelity Dummy Virtual Device

SoC: plxtech,nas782x

CPU Arm11MPCore

Memory up to 512M

Interrupt Controller gic

Time-related rps, oscillator, sysclk, plla, pllb, stdclk, twdclk

UART ns16550a

Others gmacclk, pcie, watchdog, sata, nand, ethernet, ehci, leds

High fidelity to make the Linux
kernel functional-correct

Low fidelity for successful boot

High-fidelity Virtual Device

Challenge and Observation 2Challenge and Observation 2

⮚ Multiple models for interrupt
controllers

⮚ ralink-rt2880-intc
⮚ qca,ar7240-intc
⮚ marvell,orion-intc
⮚ marvell,orion-bridge-intc
⮚ arm,cortex-a9-gic
⮚ …

• Diverse models: Linux subsystems that hide implementation details

• Extracting state machines from the Linux subsystems (Type-I)

Challenge and Observation 3Challenge and Observation 3

⮚ Mask Interrupt
⮚ MMIO Read M -> a
⮚ a &= flags
⮚ MMIO Write a -> M

⮚ Load IRQ number
⮚ MMIO Read I -> b
⮚ switch(b)
⮚ …

• Complex semantics: Specific driver interface callbacks that embed complex semantics

• Extracting MMIO R/W sequences

Core Technique: Model-guided Kernel ExecutionCore Technique: Model-guided Kernel Execution

• Peripheral model = the model template (a state machine) + the model parameters (MMIO
R/W sequences as transition conditions)

Model-guided Kernel Execution: Running ExampleModel-guided Kernel Execution: Running Example

• The MMIO Read/Write sequence from Linux kernel can be recognized
to drive the state machine of our emulated peripherals

Model-guided Kernel Execution: Running ExampleModel-guided Kernel Execution: Running Example

• The MMIO Read/Write sequence from Linux kernel can be recognized
to drive the state machine of our emulated peripherals

Model-guided Kernel Execution: Running ExampleModel-guided Kernel Execution: Running Example

• The MMIO Read/Write sequence from Linux kernel can be recognized
to drive the state machine of our emulated peripherals

Model-guided Kernel Execution: Running ExampleModel-guided Kernel Execution: Running Example

• The MMIO Read/Write sequence from Linux kernel can be recognized
to drive the state machine of our emulated peripherals

Model-guided Kernel Execution: Running ExampleModel-guided Kernel Execution: Running Example

• The MMIO Read/Write sequence from Linux kernel can be recognized
to drive the state machine of our emulated peripherals

Model-guided Kernel Execution: Running ExampleModel-guided Kernel Execution: Running Example

• The MMIO Read/Write sequence from Linux kernel can be recognized
to drive the state machine of our emulated peripherals

Model-guided Kernel Execution: Running ExampleModel-guided Kernel Execution: Running Example

• The MMIO Read/Write sequence from Linux kernel can be recognized
to drive the state machine of our emulated peripherals

Model-guided Kernel Execution: MethodologyModel-guided Kernel Execution: Methodology

• We semi-automatically build the state machine of each peripheral: a
general model template (manually) plus model parameters
(automatically)

System Design and ImplementationSystem Design and Implementation

LLVM pass for preprocess
KLEE for MMIO R/W Seq
Python for glues

Python for main logic
Template-render pattern

EvaluationEvaluation

RQ 1: What peripheral models can we generate?
Type I

Type II: # of initial values/# of Type II peripherals

Family of SoCs Interrupt Controller Timer First Solution (Second) Exists CSVF (y/n) Timer Semantics

ramips/rt305x ralink-rt2880-intc not necessary 1 n -

ath79/generic qca,ar7240-intc not necessary 5 n -

kirkwood/generic marvell,orion-intc
marvell,orion-bridge-intc

marvell,orion-timer 2 y y=~x

bcm53xx/generic arm,cortex-a9-gic arm,cortex-a9-global-timer
arm,cortex-a9-twd-timer

2,207 y y=x1<<32+x2

oxnas/generic arm,arm11mp-gic plxtech,nas782x-rps-timer 914 y y=x

Family of SoCs ramips/rt305x ath79/generic kirkwood/generic bcm53xx/generic oxnas/generic

count 1/10 2/15 3/26 2/4 2/9

EvaluationEvaluation

RQ 2: What embedded Linux kernels can we rehost?

Given 6K+ firmware crossing 10 vendors, 3 architectures, and 22 Linux kernel
versions, FirmGuide can successfully rehost more than 96% of them.

Subtarget Unpack Kernel User Space Shell

ramips/rt3050 4784 4784 4743 (99.14%) 4345 (90.80%)

ath79/generic 541 541 444 (82.07%) 444 (82.07%)

bcm53xx/generic 388 388 388 (100.00%) 388 (100.00%)

kirkwood/generic 330 326 324 (99.39%) 244 (74.85%)

oxnas/generic 149 149 48^ (32.21%) 48^ (32.21 %)

Overall 6192 6188 5947 (96.11%) 5469 (88.38%)

^The successful rate to support oxnas/generic is low because it cannot recognize our ramfs due to a unset flag.

EvaluationEvaluation

RQ 3: What about the functionality of the rehosted embedded Linux kernels?
Linux Test Project: Syscall Testing

RQ 4: What are application of FirmGuide?
CVE Reproduction and Exploit Development Fuzzing

UnicoreFuzz

TriforceAFL

Models Pass Skipped Failed Total

Fully Generated 1049 164 46 1259

Ground Truth 1049 164 46 1259

CVE ID CVE Type Triggering Exploitation

CVE-2016-5195 Race Condition N N

CVE-2016-8655 Race Condition Yes Y

CVE-2016-9793 Integer Overflow Y N

CVE-2017-7038 Integer Overflow Y Y

CVD-2017-1000112 Buffer Overflow Y Y

CVE-2018-5333 NULL Pointer Dereference Y Y

SummarySummary

Conclusion

A novel technique “Model-Guided Kernel Execution” for peripheral modeling

The first semi-automatic framework for embedded Linux kernel rehosting

Feasible dynamically understanding and mining vulnerability in embedded kernels

DiscussionDiscussion

Limitation and future work

Manual state machine construction for more complex peripherals

High fidelity of Type-II peripherals

Q & A
qiangliu@zju.edu.cn, cen001@e.ntu.edu.sg

	Slide: 1
	Slide: 2
	Slide: 4
	Slide: 5
	Slide: 6
	Slide: 8
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 9 (3)
	Slide: 9 (4)
	Slide: 9 (5)
	Slide: 9 (6)
	Slide: 9 (7)
	Slide: 10
	Slide: 11
	Slide: 12
	Slide: 13
	Slide: 14
	Slide: 15
	Slide: 16

