ViDeZZo: Dependency-aware Virtual Device Fuzzing

Qiang Liu (Zhejiang University; EPFL) Flavio Toffalini (EPFL) Yajin Zhou (Zhejiang University) Mathias Payer (EPFL)

Virtual Device Security Matters!

Virtual device is software that emulates hardware

Hypervisor must isolate the host from the guest

Virtual device vulnerabilities are the biggest single type

In virtual device Not in virtual device

QEMU vulnerabilities VM escapes 0% 50% 100%

guest os	guest os		
hypervisor			
host os			

How to fuzz virtual devices in an efficient and scalable way?

Key Points

Virtual Device Messages

- Port IO read/write
- MMIO read/write
- DMA read/write

Message Sequence

• E.g., two MMIO messages

Key challenges: intra-message and inter-message dependency

Key Challenge 1: Intra-Message Dependency

A field in a virtual device message may be dependent on another field

Key Challenge 2: Inter-Message Dependency

- A message may depend on a previously issued message
- Message 2 and message 3
- Operate two related registers 0x0 and 0x4
- Which message should be issued first?
- Message 3 {0x4} depends on message 2 {0x0}

0x0	XXX	ХХХ
0x4	XXX	ХХХ

Solution 1: Intra-Message Annotation

Semi-automatically extract intra-message annotation from source code

Solution 2: Inter-Message Mutation

Automatically learn the dependency with new mutators during fuzzing

Fuzzing Workflow

Fuzzing Workflow

Fuzzing Workflow

Expressive Grammar Limits Manual Effort

ViDeZZo semi-automatically models 18 QEMU virtual devices

- While Nyx models only 1 QEMU virtual device manually
- Why do we need manual effort?
- Unnamed types (four cases)
- Disjointed control flow (four virtual devices)
- Context-aware dependencies (five virtual devices)

Coverage and Bugs

ViDeZZo scales to 28 virtual devices

- Covering 5 device categories, 4 archs, and 2 vmms
- Achieving competitive final coverage results faster
- ViDeZZo discovers 24 existing bugs and 28 new bugs
- In both QEMU and VirtualBox
- In both virtio/non-virtio virtual devices
- Covering not only checks but also spatial/temporal memory corruption

We have seven patches accepted

ViDeZZo: Dependency-aware Virtual Device Fuzzing

Fuzzing virtual device must consider

• Intra-message and inter-message dependencies

ViDeZZo addresses them with

• Intra-message annotation and inter-message mutators

ViDeZZo found 28 new bugs in both QEMU and VirtualBox

Backup slides

System Design

Only One CVE?

Bug	Description	V-SHUTTLE	QEMFUZZER	VIDEZZO	
CVE-2020-11869	ATI-VGA IO	35.6M	_	782K (98.0K-2.85M)	
CVE-2020-25084	EHCI UAF	79.4M	1.80M (1.36–2.23M)	44.0M (11.7M-88.8M)	
CVE-2020-25085	SDHCI HBO	8.88M	1.58M (1.28M–1.85M)	32.3M (1.74M-114M)	
CVE-2020-25625	OHCI IL	40.5M	TIMEOUT	2.22K (1.02K-6.22K)	
CVE-2021-20257	E1000 IL	235K	TIMEOUT	283K (101K-618K)	

Summary of Manual Effort

Step (where in the text)	Manual effort	Estimated average time	
Add a new VMM (Section 5.3)	Register a virtual device by searching its architecture, the launch command line, and the signature of PIO/MMIO regions.	10 minutes per virtual device	
	Initialize a VMM and identify the testing interfaces by following the main() in an existing VMM frontend.	A week per VMM (up to two weeks for debugging)	
	Decide and implement the dispatching methods by looking for guest memory access functions.	An hour per VMM	
Finish the rest of the annotation extraction after scanning the source code of a virtual device with our static analysis engine (Section 6.1)	Extract the definition of unnamed types by looking at the source code.	Two minutes per case	
	Match two taint analysis results touching the same variable due to disjointed control flow by reading the source code.	15 minutes per case	
	Extract the head-tail pointer context by reading the source code.	10 minutes per case	
	Extract the flag/tag pointer context by reading the source code.	20 minutes per case	
	Extract the length and buffer context by reading the source code.	Five minutes per case	
Add a new group mutator (end of Section 4.3)	Obtain the insight about what group mutator is necessary by fuzzing virtual devices.	N/A	
	Decide the feedback and develop the handler with the help of our action-trigger protocol.	Hours per case (up to two days for debugging)	

Summary of Scalability

Flexible System Design

• ViDeZZo-Core and ViDeZZo-VMM

Lightweight Annotation

Reuse the Same Annotation

• Same virtual devices of different hypervisors

Device	VDF	HYPERCUBE	Nyx-Legacy	V-SHUTTLE	QEMUFuzzer	VIDEZZO
QEMU-x86 Audio						
AC97	53.0%	100%	94.04%	_	95.93%	95.90%
CS4231a	56.0%	74.76%	75.36%	85.80%	94.06%	92.61%
ES1370	72.7%	91.38%	89.69%	91.91%	88.40%	91.36%
Intel-HDA	58.6%	79.17%	62.61%	78.30%	65.87%	64.78%
SB16	81.0%	83.80%	83.12%	81.52%	84.15%	87.54%
QEMU-x86 Storage						
AHCI	_		- 1	61.60%	49.89%	62.06%
FDC	70.5%	84.51%	70.06%		69.23%	69.72%
Megasas	_	_		58.50%	58.67%	76.74%
SDHCI	90.5%	81.15%	73.58%		71.34%	68.52%
VirtIO-BLK	_		_	2,	30.55%	55.39%
QEMU-x86 Network						
E1000	81.6%	66.08%	53.36%	74.50%	35.32%	82.27%
E1000E (1/2)1	_	_	_	_	63.12%	60.94%
E1000E (2/2) ¹	_	-			35.48%	40.84%
EEPro100	75.4%	83.32%	82.12%	2. <u></u>)	82.13%	90.46%
NE2000	71.7%	71.89%	74.35%	71.90%	75.09%	94.00%
PCNET	36.1%	78.81%	78.87%	88.90%	93.27%	92.10%
RTL8139	63.0%	74.68%	83.33%	80.82%	83.06%	77.46%
QEMU-x86 Display						
ATI-VGA (1/2)2	_			79.40%	_	80.69%
ATI-VGA (2/2)2	_	—		—		85.67%
CIRRUS-VGA	-	S			88.65%	89.68%
QEMU-x86 USB						
EHCI		-	- 1	31.19%	71.84%	71.96%
OHCI	_			36.62%	77.33%	83.99%
UHCI	_	-		22.27%	55.90%	72.00%
XHCI	-	64.40%	63.24%	-	52.92%	81.63%
XHCI			Nyx-Spec 77.12%			
QEMU-x86_64	1					
VirtIO-BLK	_	_	- 1	_	_	55.39%
QEMU-AArch32						_
PL041 (Audio)	_		_	_		83.91%
SMC91C111 (Net)		_	_	_	92.14%	92.98%
TC6393XB (Display)	_	_	_	_	_	76.38%
QEMU-AArch64			1			
XLNX-ZYNOMP-CAN	_	-	-	_	_	70.42%
XLNX-DP (Display)	_			_	_	90.42%
VirtualBox x86_64						
SB16					_	61.33%
FDC	_		_	_		39.32%
PCNET	_	-	_		_	48.35%
OHCI	_	_		_		36 13%