
ViDeZZo: Dependency-aware
Virtual Device Fuzzing

Qiang Liu (Zhejiang University; EPFL) Flavio Toffalini (EPFL)
Yajin Zhou (Zhejiang University) Mathias Payer (EPFL)

Virtual device is software that emulates hardware

Hypervisor must isolate the host from the guest

Virtual device vulnerabilities are the biggest single type

0% 50% 100%

VM escapes

QEMU
vulnerabilities

In virtual device Not in virtual device

Virtual Device Security Matters!

2

How to fuzz virtual devices in an efficient and scalable way?

guest
os

guest
os

hypervisor

host os

Virtual Device Messages
● Port IO read/write
● MMIO read/write
● DMA read/write

Message Sequence
● E.g., two MMIO messages

Key Points

3

operating
system

virtual
device

memory

Port IO
MMIO

Memory write PCI_DMA_READ()

Key challenges: intra-message and inter-message dependency

command pointerregister

command pointerregisterRegister offset in
 a virtual device

Data embedded
into a message

Message 1
● Pointer points to something

Field pointer should point to which object?
● It depends on the value of command

Key Challenge 1: Intra-Message Dependency

4

A field in a virtual device message may be dependent on another field

command pointer
OBJECT1
OBJECT2

&7 == 1 pointer
OBJECT1

&7 == 2 pointer
OBJECT2

xxx

xxx

xxx

Message 2 and message 3
● Operate two related registers 0x0 and 0x4

Which message should be issued first?
● Message 3 {0x4} depends on message 2 {0x0}

Key Challenge 2: Inter-Message Dependency

A message may depend on a previously issued message

0x0
0x4

0x0 0x4

a

0x4 0x0

define

use

Good!

xxx xxx
xxx xxx

5

vd0=Model(‘tx’, 0)
vd0.add_struct(‘tx_t’, {
 ‘command#0x4’: FLAG,
 ‘address#0x4’: POINTER})
vd0.add_flag(
 ‘tx_t.command’, {0: 3})

vd0.add_point_to(
 ‘tx_t.address’, [...,
 /*1*/object1, /*2*/object2, ...],
 condition=[‘tx_t.command’])

Solution 1: Intra-Message Annotation

6

virtual device
source code

intra-message
annotation

message with
intra-message
dependency

00
01
02
03
04
05
06
07
08
09
10

Semi-automatically extract intra-message annotation from source code

Solution 2: Inter-Message Mutation

7

message
sequence

mutated
sequence

Message Level
• ChangeValue: mutate the

value of a message
Sequence Level
• ShuffleMessage: shuffle a

sequence message
Group Level
• GroupMessage: group

message for future re-use

Automatically learn the dependency with new mutators during fuzzing

corpus

Fuzzing Workflow

8

ChangeValue
EraseMessage

InsertRepeatedMessage

Fuzzing Workflow

9

messages with
intra-message
dependency

ChangeValue
EraseMessage

InsertRepeatedMessage

Fuzzing Workflow

10

GroupMessage
ChangeValue

EraseMessage
InsertRepeatedMessage

messages with
intra-message
dependency

Expressive Grammar Limits Manual Effort

ViDeZZo semi-automatically models 18 QEMU virtual devices
● While Nyx models only 1 QEMU virtual device manually

Why do we need manual effort?
● Unnamed types (four cases)
● Disjointed control flow (four virtual devices)
● Context-aware dependencies (five virtual devices)

11

ViDeZZo scales to 28 virtual devices
● Covering 5 device categories, 4 archs, and 2 vmms
● Achieving competitive final coverage results faster

ViDeZZo discovers 24 existing bugs and 28 new bugs
● In both QEMU and VirtualBox
● In both virtio/non-virtio virtual devices
● Covering not only checks but also spatial/temporal memory corruption

We have seven patches accepted

Coverage and Bugs

12

ViDeZZo

ViDeZZo: Dependency-aware Virtual Device Fuzzing

Fuzzing virtual device must consider
● Intra-message and inter-message dependencies

ViDeZZo addresses them with
● Intra-message annotation and inter-message mutators

ViDeZZo found 28 new bugs in both QEMU and VirtualBox

Backup slides

14

System Design

15

Only One CVE?

16

Summary of Manual Effort

17

Summary of Scalability

Flexible System Design
● ViDeZZo-Core and ViDeZZo-VMM

Lightweight Annotation

Reuse the Same Annotation
● Same virtual devices of different hypervisors

