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Virtual device is software that emulates hardware

Hypervisor must isolate the host from the guest

Virtual device vulnerabilities are the biggest single type
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In virtual device Not in virtual device

Virtual Device Security Matters!
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How to fuzz virtual devices in an efficient and scalable way?
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Virtual Device Messages
● Port IO read/write
● MMIO read/write
● DMA read/write

Message Sequence
● E.g., two MMIO messages

Key Points
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Key challenges: intra-message and inter-message dependency

command pointerregister

command pointerregisterRegister offset in
 a virtual device

Data embedded
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Message 1
● Pointer points to something

Field pointer should point to which object?
● It depends on the value of command

Key Challenge 1: Intra-Message Dependency
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A field in a virtual device message may be dependent on another field

command pointer
OBJECT1
OBJECT2

&7 == 1 pointer
OBJECT1

&7 == 2 pointer
OBJECT2
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xxx

xxx



Message 2 and message 3
● Operate two related registers 0x0 and 0x4

Which message should be issued first?
● Message 3 {0x4} depends on message 2 {0x0}

Key Challenge 2: Inter-Message Dependency

A message may depend on a previously issued message

0x0
0x4

0x0 0x4
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vd0=Model(‘tx’, 0)
vd0.add_struct(‘tx_t’, {
  ‘command#0x4’: FLAG,
  ‘address#0x4’: POINTER})
vd0.add_flag(
  ‘tx_t.command’, {0: 3})

vd0.add_point_to(
  ‘tx_t.address’, [  ..., 
  /*1*/object1,  /*2*/object2, ...],
  condition=[‘tx_t.command’])

Solution 1: Intra-Message Annotation
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Semi-automatically extract intra-message annotation from source code



Solution 2: Inter-Message Mutation
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message 
sequence

mutated 
sequence

Message Level
• ChangeValue: mutate the 

value of a message
Sequence Level
• ShuffleMessage: shuffle a 

sequence message
Group Level
• GroupMessage: group 

message for future re-use

Automatically learn the dependency with new mutators during fuzzing

corpus



Fuzzing Workflow
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ChangeValue
EraseMessage

InsertRepeatedMessage



Fuzzing Workflow
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Fuzzing Workflow
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GroupMessage
ChangeValue

EraseMessage
InsertRepeatedMessage

messages with
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dependency



Expressive Grammar Limits Manual Effort

ViDeZZo semi-automatically models 18 QEMU virtual devices
● While Nyx models only 1 QEMU virtual device manually

Why do we need manual effort?
● Unnamed types (four cases)
● Disjointed control flow (four virtual devices)
● Context-aware dependencies (five virtual devices)
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ViDeZZo scales to 28 virtual devices
● Covering 5 device categories, 4 archs, and 2 vmms
● Achieving competitive final coverage results faster

ViDeZZo discovers 24 existing bugs and 28 new bugs
● In both QEMU and VirtualBox
● In both virtio/non-virtio virtual devices
● Covering not only checks but also spatial/temporal memory corruption

We have seven patches accepted

Coverage and Bugs
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ViDeZZo



ViDeZZo: Dependency-aware Virtual Device Fuzzing

Fuzzing virtual device must consider 
● Intra-message and inter-message dependencies

ViDeZZo addresses them with 
● Intra-message annotation and inter-message mutators

ViDeZZo found 28 new bugs in both QEMU and VirtualBox



Backup slides
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System Design
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Only One CVE?
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Summary of Manual Effort
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Summary of Scalability

Flexible System Design
● ViDeZZo-Core and ViDeZZo-VMM

Lightweight Annotation

Reuse the Same Annotation
● Same virtual devices of different hypervisors


