
REFLECTA: Reflection-based Scalable and Semantic Scripting
Language Fuzzing

Chibin Zhang
EPFL

Lausanne, Switzerland
chibin.zhang@epfl.ch

Gwangmu Lee
EPFL

Lausanne, Switzerland
gwangmu.lee@epfl.ch

Qiang Liu
EPFL

Lausanne, Switzerland
cyruscyliu@gmail.com

Mathias Payer
EPFL

Lausanne, Switzerland
mathias.payer@nebelwelt.net

Abstract

Scripting languages such as Python and JavaScript have revolu-
tionized modern software development thanks to their flexibility
and rich functionalities. However, scripting languages provide a
large attack surface, allowing adversaries to exploit bugs in the
execution engines to perform sandbox escapes or execute arbitrary
code. While fuzzing successfully revealed vulnerabilities in execu-
tion engines, current techniques still face scalability and semantic
correctness challenges. Specifically, existing approaches fail to scale
to multiple scripting languages and often lack semantic correctness.

Reflecta, our novel scripting language fuzzer, relies solely on a
common introspection feature in programming languages, namely
reflection, enabling a generic fuzzer design across different script-
ing languages. With reflection, Reflecta gains the capabilities
to explore the rich set of language features dynamically, signifi-
cantly reducing manual efforts. Reflecta thus manages to generate
language-feature-rich programs and perform type-aware mutation,
producing programs with high semantic correctness. We imple-
mented Reflecta to fuzz six execution engines for four prevalent
scripting languages, Python, JavaScript, Ruby, and PHP. Reflecta
achieves 1.74x~ 3.35x improvement in semantic correctness and
1.63x~ 2.21x improvement in code coverage compared to state-
of-the-art language-general fuzzers and favorably compares to
manually-augmented language-specific fuzzers without any prior
semantic information. Moreover, Reflecta has discovered 25 un-
known bugs confirmed by the developers of PHP, MRuby, and
MicroPython, 16 of which have already been fixed.

CCS Concepts

• Security and privacy→ Software and application security.

Keywords

Software Security, Fuzzing, Interpreters, Programming Languages

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’25, Hanoi, Vietnam
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1410-8/25/08
https://doi.org/10.1145/3708821.3710818

ACM Reference Format:

Chibin Zhang, Gwangmu Lee, Qiang Liu, and Mathias Payer. 2025. RE-
FLECTA: Reflection-based Scalable and Semantic Scripting Language
Fuzzing. In ACM Asia Conference on Computer and Communications Se-
curity (ASIA CCS ’25), August 25–29, 2025, Hanoi, Vietnam. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3708821.3710818

1 Introduction

Scripting languages such as Python [18], JavaScript [4], PHP [11],
Ruby [15] are at the forefront of modern software development.
These languages offer flexible usability and comprehensive standard
libraries that facilitate rapid and adaptive development processes.
Specifically, scripting language execution engines turn script source
code into bytecode, execute them either through interpretation
or Just-in-Time (JIT) compilation, and through their standard li-
braries present rich functionalities. While the execution engines of
scripting languages aim to provide fundamental security measures,
including memory safety and sandboxing, vulnerabilities within
the execution engines themselves can jeopardize these protections,
exposing the host system to risks such as sandbox escapes [31] and
unauthorized remote code execution [2].

In response to these challenges, researchers have turned to
fuzzing as a method to discover bugs in scripting language execu-
tion engines. However, existing approaches suffer from critical limi-
tations that hinder widespread adoption or result in incomplete bug
finding. First, they lack scalability to support rich language features
across multiple scripting languages and implementations. Scripting
languages offer stable features such as control flow, object-oriented
programming, and dynamic typing, alongside frequently changing
elements like APIs from standard libraries. Developing specialized
fuzzers for individual execution engines is time-consuming and
difficult to scale. Most existing work [46, 54], like Fuzzilli [34]
(~45K LoC), focuses on JavaScript engines, particularly for JIT-
related issues. While effective for JIT bugs, these techniques are
less relevant for other languages and interpreters, where rich func-
tionality is typically embodied in the standard library. Furthermore,
many scripting languages have alternative engine implementations
(e.g., CPython or MicroPython for Python, CRuby or MRuby for
Ruby [5, 9, 19, 20]), each with modifications tailored to specific use
cases. As languages continue to evolve, introducing new features
and APIs, fuzzing tools that rely heavily on manual grammar ad-
justments or predefined corpora [21, 37, 50] become increasingly

https://orcid.org/0009-0003-7367-2131
https://orcid.org/0009-0006-6464-355X
https://orcid.org/0000-0002-5865-6227
https://orcid.org/0000-0001-5054-7547
https://doi.org/10.1145/3708821.3710818
https://doi.org/10.1145/3708821.3710818

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Zhang et al.

Nautilus PolyGlot Fuzzilli SoFi PyRTFuzz Reflecta

Minimal spec ✗ ✗ ✗ ✗ ✗ ✓

No initial corpus ✓ ✗ ✓ ✗ ✓ ✓

Multiple languages ✓ ✓ ✗ ✗ ✗ ✓

Semantic-aware ✗ △ ✓ ✓ ✓ ✓

Table 1: Qualitative comparison of Reflecta with state-of-

the-art scripting language fuzzers. △: Semantic support of

PolyGlot remains “under development” as of this writing.

unsustainable and prone to error. This limits their ability to scale
for bug identification as new languages and features emerge.

Second, existing fuzzers struggle to ensure semantic correctness
of the mutated programs. Approaches that only focus on syntactic
correctness [22, 24, 39] may pass simple syntax checks (e.g., using
correct operators) but likely fail the following semantic checks
(e.g., type correctness). Approaches resorting to manual annota-
tions [29, 34] are not scalable. For instance, Fuzzilli dedicates 1,182
lines just for specifying types of built-in objects and functions,
plus several hundred lines of specialized profile for each individual
JavaScript engine. More importantly, statically encoding the seman-
tic information of scripting languages is not sufficient [38, 45, 46] as
the dynamic nature of scripting languages dictates valid program
semantics to be determined at runtime.

To navigate these challenges, we leverage reflection, an intrin-
sic and common introspection feature of modern programming
languages. Reflection provides a universal way to access detailed
and precise semantic information about language features at run-
time, allowing for on-the-fly inspection and interaction with the
language’s semantics. For instance, a program may retrieve a list
of available language features (e.g., built-in objects) within the cur-
rent execution environment, and further query the methods, the
attributes, and the type associated with a certain runtime object.

Our proposed fuzzer, Reflecta, harnesses reflection to ease the
design of scripting language fuzzing and automate the fuzzing
process. Specifically, Reflecta first enumerates built-in language
features (i.e., built-in objects, functions, and modules) using reflec-
tion and then generates language-feature-rich programs. Reflecta
also ensures the semantic correctness of mutated programs with
reflection by automatically deducing the type-correct method sig-
natures. In the end, Reflecta achieves a substantial coverage of
language features while ensuring semantic correctness in the mu-
tated programs, with only a minimal, invariable core syntax of a
target language. Table 1 shows the qualitative benefits of Reflecta
compared to the state-of-the-art scripting language fuzzers.

In our evaluation on CPython, MicroPython, CRuby, MRuby,
PHP, and V8 Reflecta improves the program correctness by 1.74x
over Nautilus and by 3.35x over PolyGlot. Furthermore, on av-
erage, Reflecta improves code coverage by 1.63x over Nautilus
and 2.21x over PolyGlot. Reflecta even reaches comparable code
coverage compared to heavily hand-tuned targets, V8 for Fuzzilli
with manual semantic annotations and PHP for PolyGlot with
an extensive pre-selected initial corpus, without any prior semantic
information. Lastly, Reflecta discovered 25 unique unknown bugs
across PHP, MRuby, and MicroPython, a majority of which missed
by existing fuzzers, and 16 bugs have been fixed.

The core contributions of Reflecta are as follows:

1 # Show globally defined constants and modules.
2 irb > Object.constants
3 [:Exception , :Math , :Set , :RUBY_PATCHLEVEL , ...]
4
5 # Get type of a value.
6 irb > RUBY_PATCHLEVEL.class (). name()
7 => "Integer"
8
9 # Get the methods of an Integer object.
10 irb > RUBY_PATCHLEVEL.methods ()
11 => [: anybits?, :nobits?, :downto , ...]
12
13 # Get the arity of Integer.downto.
14 irb > RUBY_PATCHLEVEL.method (: downto).arity()
15 => 1

Figure 1: Reflection in the Ruby interactive shell (irb).

• Based on the observation that reflection exposes rich lan-
guage features, we present a scalable and semantic-correct
approach for scripting language fuzzing, eliminating exten-
sive manual efforts.

• With extensive evaluation, we found 25 new bugs in popu-
lar scripting language engines including: PHP, MRuby, and
MicroPython. All the bugs are confirmed by the developers
and 16 bugs have been fixed.

• We open source our fuzzer: https://github.com/HexHive/
Reflecta

2 Background

Here, we note the key characteristics of scripting languages and
discuss the implications in testing their execution engines.
Dynamic type system. Unlike statically typed languages, script-
ing languages assign types to runtime objects rather than variables,
postponing type verification to runtime. This dynamic typing fa-
cilitates flexible development and swift prototyping, allowing, for
instance, methods to return different types of data depending on
the context. However, this flexibility complicates static analysis,
making it challenging to ascertain the type correctness of a program
or generate type-appropriate programs without actual execution.
Rich standard library. The standard libraries of scripting lan-
guages offer extensive high-level functionalities that extend well
beyond basic computation, but this broad feature set increases the
likelihood of bugs within the larger library codebase compared to
other components (e.g., parsers) in the execution engine.
Reflection. Scripting languages commonly provide reflection [14],
a powerful feature that enables programs to introspect the execution
environment and the language structure (e.g., available modules
and object types). Programs may leverage such meta-programming
information to, for example, inspect the execution environment and
the objects in themselves. We summarized the representative meta-
programming information available through reflection as follows.

• Available global symbols. Available global modules, ob-
jects, and functions in the current execution environment,
including the standard libraries.

• Object attributes and type. Available properties (i.e., data
fields) and methods (i.e., member functions) of a given object,
as well as the type itself.

• Function or method arity. The number of arguments re-
quired for a function or method.

https://github.com/HexHive/Reflecta
https://github.com/HexHive/Reflecta

REFLECTA: Reflection-based Scalable and Semantic Scripting Language Fuzzing ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

Example of reflection. As shown in Figure 1, it only requires
a few method calls to obtain semantic information using reflec-
tion. Line 2 first queries a list of language features exposed as
globally-defined modules and constants, where RUBY_PATCHLEVEL
is a global constant. To obtain RUBY_PATCHLEVEL’s type, line 6 in-
vokes class().name() that returns its definition class, Integer.
Similarly, to get a list of callable methods of RUBY_PATCHLEVEL,
line 10 calls its methods()method. Finally, line 14 calls the arity()
method to identify the number of accepted arguments of themethod
downto().
Extra benefits of reflection. Reflection obtains comprehensive
language features, including not only meta-programming informa-
tion such as global symbols, object attributes and type, function or
method arity, but also fundamental functionalities such as scope
constructs and basic operators. For instance, the with block in
Python invokes the magic methods __enter__() and __exit__().
Interestingly, all operators in Ruby are sugar-coated calls to their re-
spective methods (e.g. a + 1 is actually a.+(1)). Reflection allows
to enumerate and invoke all reachable magic methods, offering a
direct pathway to interact with these rich language features. There-
fore, relying solely on reflectionmakes Reflecta cover a substantial
portion of the language features, enabling the fuzzing of interpreter,
standard libraries, and the interaction between them. Additionally,
unlike other approaches, the reflection-based method requires no
adjustments for new scripting language features.
Threat model. Consistent with prior work [12, 21, 29], our threat
model assumes the attacker can execute arbitrary script code to
exploit interpreter engine bugs to obtain arbitrary native code
execution. Note that script code commonly runs in a restricted
sandbox enforced by the language runtime. Our research there-
fore aims at identifying vulnerabilities in interpreter engines to
prevent potential attacks. For example, PHP attacks may use dese-
rialization and command injection to execute arbitrary PHP code
as an initial vector, and then exploit PHP engine bugs to bypass
the disable_functions sandbox to escalate to native code ex-
ecution [1]. Recently, attacks targeted the Python LLM code in-
terpreter, with adversaries exploiting CPython engine bugs for
arbitrary server code execution [56].

3 Motivation and Requirements

Inspired by the success of fuzzing, researchers have adapted fuzzers
to test scripting languages execution engines. We first summarize
the requirements of scripting language fuzzing, scalability and se-
mantical correctness. We then discuss how existing research, despite
attempts, only partially addressed them, as well as the key limita-
tions that degrade their practicality and completeness.
Supporting multiple languages, implementations and lan-

guage features. The scalability of existing fuzzing approaches for
scripting language execution engines is hampered by three interre-
lated challenges: the prohibitive expense of developing specialized
fuzzers for each language, illustrated by Fuzzilli’s extensive lines
of code for JavaScript alone; the tedious and error-prone task of
adapting fuzzers to the nuanced differences in semantics across
alternative implementations of scripting languages, with similar
syntax yet often times diverging semantics [5, 9, 19, 20]; and the
constant evolution of language features in the standard library, as

1 irb > []. first
2 => nil # Type: Nil
3 irb > [1]. first
4 => 1 # Type: Integer
5 irb > [1]. first (3)
6 => [1] # Type: Array

(a) Method Array.first with different return types.

Array.first(num: Integer ?)
=> Nil | T | Array <T>

(b) Possible return types of Array.first at static time.

Figure 2: Motivating example on imprecision of static

type specifications. While static analysis might infer that

Array.first may have one of multiple types, reflection can

obtain the precise types of the method parameters and return

value for a given runtime instance.

evidenced by the CPython module index’s yearly addition of new
global symbols. We investigated the CPython module index from
v3.2 (Feb 20, 2011) to v3.12 (Jul 09, 2024)1 and observed that it adds
approximately 493 new global symbols per year (including modules,
classes, or attributes), culminating in 15k global symbols as of v3.12.
To handle that many symbols, an analyst would have to encode
about one symbol each day. Any mistakes, such as forgetting to
encode a symbol, may lead to incomplete bug discovery.

Requirement 1: Scalability. An ideal scripting language fuzzer
covers multiple scripting languages, implementations as well as
language features without requiring significant manual efforts.

Existing approaches fail to scale across multiple languages as
well as the language features within a language. Specifically, they re-
quire either manual grammar specifications that thoroughly include
all language features [21, 50] or large feature-rich initial corpora to
infer or recycle language details [37, 46]. Heavy reliance on manual
efforts is prone to be incomplete and, worse yet, static approaches
call for continuous maintenance of the specifications or corpora as
the number of language features grows. Table 3 shows the number
of symbols in the manual grammar specifications (Nautilus and
PolyGlot), which not only takes a significant portion of grammar
specifications but also needs to be updated whenever new language
features (e.g., new library APIs) are introduced. This process re-
quires exhaustive manual efforts and hence is not scalable.We argue
that manual effort is best spent to extend the coverage beyond what
can automatically be covered automatically, e.g., through reflection.
Ensuring the semantical correctness of the mutated pro-

grams. Syntactic correctness is easy to achieve through a syntax
grammar while semantical correctness remains challenging. This
is mainly due to the dynamic type systems of scripting languages.
Semantical correctness ensures that a program executes up to a
certain point without triggering any exceptions due to missing def-
initions or other violations. Therefore, with semantical correctness,
a scripting language fuzzer can explore more functionalities of the
execution engine and reach deeper code.

1We counted for the number of modules in the index page
and <dt ...> for the number of in-module objects in each module page.

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Zhang et al.

Requirement 2: Semantic Correctness. An ideal scripting lan-
guage fuzzer generates and mutates semantically correct programs
to explore deeper functionalities by avoiding early exceptions.

Existing approaches fall short when generating or mutating
semantically correct programs. Specifically, manual semantic anno-
tations are prone to under- or over-constraining semantic informa-
tion, and statically analyzing program semantics is incompatible
with the dynamic typing rules in scripting languages. Figure 2
shows the difficulty of statically specifying a type-correct method
signature in Ruby. The precise return type of the Array.first
method may depend on the length of the array (line 2), the el-
ements of the array (line 4), and whether the method is called
with an optional parameter (line 6). Static analysis will conclude
three types of Array.first that has only one valid type at runtime,
resulting in either producing semantically incorrect programs or
overconstraining the testable program space.

4 Reflecta Design

The core novelty of Reflecta is using reflection to fuzz multiple
scripting languages with minimal manual intervention. Reflecta
only requires a minimal, non-increasing core syntax of the target
language and automatically expands it to most language features
(e.g., library modules) through reflection. Furthermore, Reflecta
leverages reflection to automatically generate type-correct pro-
grams (e.g., type-correct calls), achieving high correctness.
Overview. Figure 3 gives an overview of the fuzzing loop. Reflecta
first obtains a list of available language features using reflection
and generates a small number of initial programs in the corpus
with support from the provided core syntax (subsection 4.1). Then,
Reflecta probabilistically generates more programs or mutates the
corpus programs in a semantic-aware way by deducing type-correct
method prototypes with reflection and transplanting necessary
objects for new method calls with program slicing (subsection 4.2).
Program Generation (subsection 4.1) and Type-Aware Mutation
(subsection 4.2) ensure both semantic correctness (generating type
correct program) and scalability (operating on the same minimal
syntax). Finally, Reflecta takes special care of the programs with
unseen object types by adding them to the corpus in the hope of
discovering new behaviors of the execution engine following new
and rarer types (subsection 4.3). Type-enhanced Corpus Feedback
(subsection 4.3) primarily boosts scalability and it makes sure that
the fuzzer mutates objects of different types uniformly and scales to
all builtin functions and objects without manual scheduling effort.

4.1 Program Generation

Reflecta first discovers available language features in the execu-
tion engine through reflection, and then using the minimal core
syntax provided by users, generates a small number of initial pro-
grams to populate the initial corpus. Reflecta also probabilistically
generates new programs during the fuzzing alongside the mutation.
Core syntax and reflection wrappers. Reflecta requires two
pieces of non-increasing and one-time manual information: the
core syntax and the reflection wrappers. The core syntax is an in-
variable language grammar to language feature changes, such as
function calls or variable assignments. Each scripting language has

Wrapper Return

enumGlobalSyms() Return the list of global symbols (e.g.,
standard library modules or functions).

reflectObject(o) Given an object o, return its type name,
attribute list, arity, and callability.

Table 2: Reflection wrappers that Reflecta requires.

its own core syntax and different scripting language execution en-
gines share the same core syntax (see Figure 3). The core syntax is
small. Table 3 demonstrates that the core syntax used by Reflecta
is 5× to 100× smaller than full-blown syntax used by other fuzzers.
Reflecta utilizes the core syntax to generate syntactically correct
programs and expands these programs further with semantic in-
formation during the mutation phase. The reflection wrappers link
Reflecta to the reflection of different target scripting languages
(see Table 2). Reflecta utilizes the reflection wrappers to invoke
the underlying language-specific reflection APIs and retrieve the
data in a JSON format (see Figure 5). Appendix A summarizes how
these wrappers are implemented for the evaluated languages.
Discovering language features. When the fuzzing campaign
starts, Reflecta collects available language features by making
a reflection call (e.g., enumGlobalSyms()) that queries the execu-
tion engine for a list of built-in objects, functions, and modules.
Next, Reflecta serializes the returned list to a JSON string (see Fig-
ure 5) and writes it to a memory-backed file in a fixed location (e.g.,
/tmp/fuzzout). Then, Reflecta deserializes what in the memory-
backed file and stores it for later use during mutations. Reflecta
does this query only once because globally defined symbols do not
change throughout the campaign. At this point, Reflecta only
knows about the name of the symbols. Their types (e.g., module or
function) are to be determined during the fuzzing campaign.
Generating initial programs. Leveraging the core syntax, Re-
flecta generates programs containing simple literals (e.g., integers,
booleans, null/nil, floats, and strings) and their assignments to vari-
ables (e.g., a = 1; b = 1). Reflecta also inject language features (i.e.,
built-in objects discovered earlier through reflection) into the pro-
gram by assigning them to new variables. Reflecta then attempts
to create more complex values by combining existing literals with
unary/binary operators (e.g., +, -, *, ==, &&) as part of the core
syntax (e.g., c = a + b). More complex operations, such as referenc-
ing a property or a method of an object, are delayed to the mutation
phase (subsection 4.2) as Reflecta has no semantic knowledge
about the generated program at the beginning.

Reflecta deliberately avoids generating control-flow structures
due to following three reasons. First, generating control flow struc-
tures is unlikely to uncover new bugs, as control-flow logic in
interpreters is typically well-tested and simple to implement (e.g.,
setting virtual machine program counters to another location), a
setting that reflection cannot improve upon. The PHP test suite
contains over 18,000 test cases, including inputs that crash the
interpreter. A recent study [42] reveals that 96.1% of the tests ex-
hibit sequential control flow, executing without branching. This
finding suggests that control flow contributes little to the overall
code semantics, especially for interpreters. Second, bugs related to

REFLECTA: Reflection-based Scalable and Semantic Scripting Language Fuzzing ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

fn = add
s1 = “h”
s2 = “i”

Program
Generated Program

Instrumented
Reflection

Information

fn = add
s1 = “h”
s2 = “i”

reflect(fn)
reflect(…)

fn = add
s1 = “h”
s2 = “i”

reflect(fn)
reflect(…)

fn = add
s1 = “h”
s2 = “i”

fn(s1, s2)

fn:
 call=yes
 n_args=2
 …

fn = add
s1 = “h”
s2 = “i”

reflect(fn)
reflect(…)
reflect(fn)
reflect(…)

Program
Mutated

module std:
 func add
 func div
…

Method
Sig. Map

Lang. Features

Program
Corpus

Fuzzer

Exec. Engine

Correct
Method Sig?

Method
Sig. Map

Program
Corpus

New Cover.
or Type?

Input Mutation (Section 4.2)

Mutator Selection
(probabilistic)

(Section 4.3)

Corpus Update

Core Syntax

PROG := STMT*
STMT := ASSN | …
ASSN := VAR “=” …

(Section 4.1) .

Input Generation

enumGblSyms()
reflObj()

Reflection
Wrappers

Figure 3: Overview of the Reflecta fuzzing loop.

foo bool foo(int)
str foo(str)

⋯

⋯

⋯

foo bool foo(int)
str foo(str)

⋯

bar int bar(str,int)

1 2 3 4

Figure 4: Workflow of method signature deduction (subsection 4.2). The initial map contains foo for explanation purposes.

control flow usually stem from complex JIT optimizations, particu-
larly in browser JavaScript engines, which is already extensively
covered in related work [34, 37, 46]. These works focus on specific
optimization-related bugs and are largely orthogonal to Reflecta’s
approach. Reflecta, on the other hand focuses on different targets,
which aims to fuzz a wide range of languages and engines with min-
imal manual effort. A broader discussion on the language features
covered by Reflecta can be found in section 7.

The generated programs are saved to the corpus if they (1) do not
throw exceptions (i.e., syntactically/semantically correct) and (2)
find new coverage. In practice, since programs are relatively small
(around 10 lines), the percentage of rejected programs is low. Finally,
the fuzzer proceeds to the mutation phase when the most recently
generated 100 programs do not introduce any new coverage.

On startup, Reflecta discovers available language features with
reflection and generates initial programs with minimal core syntax,
injecting the discovered language features to the corpus.

4.2 Type-aware Program Mutation

Reflecta mutates the corpus programs in a semantic-aware way.
Using reflection, Reflecta first retrieves the semantic information
of a selected variable or object attribute. If the selected variable or
attribute is not callable, Reflecta inserts a dereference operation.
In case it is callable (i.e., method), Reflecta takes special care to
ensure semantic correctness by deducing its type-correct prototypes
and feeding valid arguments to them.
Collecting per-program semantics. To obtain semantic informa-
tion of a program, Reflecta tags a program with reflection calls at

1 num = 123 # Original program.
2 reflectObject(num) # Added in the mutation phase.

(a) Program that reflects on the object num.

"num": {
"type" : "Integer",
"arity" : "0",
"methods" : [" anybits?", "nobits?", "downto", ...],
"properties" : [],
"callable" : "false",

}

(b) Reflection result in JSON.

Figure 5: Example of object reflection.

the end and executes the tagged program to retrieve the reflection in-
formation. Specifically, Reflecta appends a reflection call at the end
of the program for each defined variable (i.e., reflectObject(x)
for the variable x), which in return yields (i) its type name, (ii)
its associated attributes, (iii) its arity (i.e., the number of accepted
arguments), and (iv) its callability. Figure 5 shows an example of
the reflection return. Given a simple program that contains the
definition of num (line 1), Reflecta adds a reflection call at the end
of the program to retrieve the reflection information of the variable
num (line 2), e.g. type and associated methods.
Selecting variables and attributes. After collecting the semantic
information, Reflecta selects variables or their attributes to add
extra operations to them. We note that certain types appear more
frequently than others, such as the primitive types like integers
and strings. As such, if Reflecta randomly selects variables from a
program, it most likely selects frequent types again and exhausting
already covered engine parts. To address this issue, Reflecta biases

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Zhang et al.

the variable selection to the ones with less frequent types. To be
specific, Reflecta maintains a global type count map that records
the number of times a given type appeared in the corpus programs.
The probability of selecting a variable is then set inversely propor-
tional to the number of times its type has occurred in the corpus to
exercise rare types more frequently.

Reflecta then selects an associated attribute of the selected
variable. Reflecta again faces a similar issue with the attribute
selection, as certain attributes are defined in the base class and
thus appear in the objects more frequently. For example, in Python,
the magic methods such as __class__, __sizeof__, __init__ are
defined for every object, likely randomly choosing those common
attributes repeatedly, which results in uninteresting executions. To
avoid this, Reflecta maintains a global attribute count map that
counts the number of times a particular attribute has been selected
and selects a new attribute inverse proportionally to the selection
count.
Deducing method signatures. If the selected variable or attribute
is a method (callable), Reflecta needs to call it with a valid signa-
ture so the execution engine can reach the deeper logic without pre-
mature exit. Moreover, Reflecta tries to cover all possible method
signatures for a given method because, due to the dynamic typing
rules, methods in scripting languages can accept multiple types as
the same argument. Calling a method with different signatures may
lead to other interesting behaviors, as depicted in Figure 2a.

To address this, Reflecta automatically discovers valid method
signatures using reflection and type error feedback, keeping valid
signatures in the method signature map. Figure 4 describes the
workflow of method signature deduction. (1) At the beginning of
a fuzzing campaign, Reflecta first initializes an empty method
signature map that maps a method name to a set of valid signatures.
A valid signature consists of a list of argument types and a return
type. (2) Reflecta then explores valid signatures during fuzzing by
leveraging the arity (i.e., the number of arguments) information of
a given method, producing method calls with the correct number
of arguments with various combinations of argument types. (3)
Reflecta incrementally deduces a set of correct method signatures
(with optional parameters) using a type error thrown by the exe-
cution engine that suggests which argument has a wrong type. (4)
Finally, if the produced method call does not throw any type error,
Reflecta instruments all method calls in the mutated program
with reflection, extracts the type of their arguments and return
values, and adds new method signatures to the map.
Exploring and exploiting method signatures. Leveraging the
method signature map, Reflecta then utilizes an 𝜖−𝑔𝑟𝑒𝑒𝑑𝑦 method
to balance the signature exploration and exploitation. As the fuzzing
campaign progresses, the method signature map is populated with
more signatures. When Reflecta selects a method as a mutation
target, Reflecta tests whether a randomly chosen value 𝛿 in [0,
1] is smaller than 𝜖 to decide to explore more method signatures
with arbitrary arguments (exploration), otherwise utilizes a type-
correct signature from the method signature map (exploitation). We
tested 𝜖 from a wide range of [0.01, 0.5] and empirically selected
0.2 as our final choice because it worked best for all targets in our
development and experimentation.

Adding correct method calls.When adding a new method call,
the correct arguments may not exist in the target program. More-
over, other than primitive types such as integers and strings, Re-
flecta has no prior knowledge of properly constructing a certain
type. To circumvent this, Reflecta leverages existing instantiation
of such types in the corpus. This is especially effective for Reflecta,
as the valid signature entry in the method signature map guarantees
that there must be some corpus programs that have properly instan-
tiated all the types in the signature learned previously. Leveraging
this, Reflecta extracts a variable with the desired type from such
programs by backward slicing the variable and its dependencies.
Specifically, starting from the statement that defines the desired
variable, Reflecta recursively marks all dependent statements that
are referenced by the statement and its recursively dependent state-
ments. Reflecta then transplants the variable and its program slice
to the target program before the new call.

Reflecta uses reflection to collect semantic information (type,
attributes, arity, callability) before mutation. It randomly selects
target variables and attributes, favoring rare types via a count map,
and balances exploration and exploitation of method signatures
using an 𝜖-greedy approach. Type-correct method calls are created
by transplanting valid type instantiations from the corpus.

4.3 Type-enhanced Corpus Feedback

Overview. Reflecta inspects the object type of every variable in a
programwith reflection and saves the program in the corpus if some
variables have unseen types, considering that different object types
permit other program behaviors. Specifically, an object type defines
which operations are implemented on the object andwhichmethods
it can be passed to as an argument. They directly indicate new
associated program behaviors, similar to the conventional coverage
feedback indicating potentially new code areas in general-purpose
fuzzing [7, 32, 48]. Reflecta utilizes both for corpus feedback.
New type without coverage gain. Notice that new types in the
program do not necessarily result in new code coverage, yet can
trigger new program behavior. For example, if an object of a certain
type has been implicitly instantiated by the execution engine (e.g.,
during the engine initialization) or by other language features (e.g.,
standard library), newly instantiating such types in the mutated
programs would not result in new coverage as the prior implicit
instantiation already covered them. However, since the implicit
instantiation is out of reach for Reflecta, the observable program
behaviors from such types are highly limited. Instead, by having a
type instance in the program, Reflecta can better explore its associ-
ated program behaviors by trying values and arguments of various
types. While similar, the global type count map (subsection 4.3) and
the global attribute map (subsection 4.2) serve different purposes.
The global type count map counts how many unique types the
fuzzer has generated so far. The global attribute count map keeps
track of the attributes for each unique type. The two maps are used
to ensure uniform generation of unique types, and their attributes.
Without the maps the fuzzer tends to be biased towards specific
types, or specific attributes of a certain object type.

REFLECTA: Reflection-based Scalable and Semantic Scripting Language Fuzzing ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

Handling meta-types. Since scripting languages also follow the
object-oriented paradigm, the class and module definitions them-
selves are also objects, hence having their own types. Specifically,
all class definitions have the equal meta-type (e.g., Class) regardless
of their definition, and so do modules (e.g., Module). This poten-
tially disrupts the type-based corpus feedback as some classes and
modules are statically referenced without instantiation, where re-
flection on such references would yield the same meta-type. To
differentiate the meta-types by their specific definitions (e.g., class
for Integer or String), Reflecta appends their definition names
to the meta-type name (e.g., Class#Integer and Class#String).
This way, when a variable that references a new class or module
definition appears, Reflecta can distinguish different definitions
of the same meta-type and add the program to the corpus.

Reflecta uses new types, alongside code coverage, as a criterion
for corpus addition. This type-enhanced feedback allows Reflecta
to explore language features (e.g., standard library objects) within
generated programs. It also disambiguates object meta-types by
associating them with their definition names (e.g., Class#Integer
for Integer).

5 Implementation

We base our implementation on Fuzzilli, a mature fuzzer main-
tained by Google for the Chrome browser’s V8 JavaScript engine.
Fuzzilli utilizes intermediate representation (IR) for semantic mu-
tation and an in-memory representation of common language con-
structs, for example, an assignment statement, or a binary operation.
Mutators and Generators that create unsupported IR statements
are removed to prevent introducing such constructs into the pro-
gram. We reuse the basic program generation and mutation fa-
cilities of Fuzzilli and extend it with language feature discovery
(subsection 4.1), the type-aware program mutation (subsection 4.2)
as additional mutators, and the type-enhanced corpus feedback
(subsection 4.3).
Core syntax and reflection wrapper. For the core syntax of each
scripting language, we implement a lightweight Fuzzilli lifter that
is responsible for serializing IR into source code strings that the
execution engine accepts. The lifter has 90 lines of Swift code on av-
erage across 4 different languages. Notice that implementing lifters
is only a one-time effort, as they only specify the core grammar and
do not contain any language feature details. For reflection wrappers,
we add 80 lines of code on average in each language. We provide
more implementation details in Appendix G and Appendix A.

6 Evaluation

In this section, we compare Reflecta to state-of-the-art scripting
language fuzzers to answer the following:

RQ1 How do the programs produced by Reflecta compare to
hand-tuned fuzzers in semantic correctness?

RQ2 How much can Reflecta cover the language features with
minimal manual effort?

RQ3 Can Reflecta find new bugs in real-world scripting lan-
guage execution engines?

RQ4 How challenging is adding new targets with Reflecta?

Language
Fuzzer

Nautilus PolyGlot Fuzzilli PyRTFuzz Reflecta

JavaScript Grammar 972 469 881 - 91
Symbol 852 71 *1,181 - 0

PHP Grammar 8,719 647 - - 86
Symbol 8,655 2,598 - - 0

Ruby Grammar 1,176 388 - - 87
Symbol 1,142 0 - - 0

Python Grammar 637 615 - - 83
Symbol 412 0 - *1205 0

Table 3: Grammar specification for evaluation used in each

fuzzer. *: counting includes both identifier names and seman-

tic annotations (e.g., method signatures).

6.1 Experimental Setup

Targets languages.We choose Python, JavaScript, PHP, and Ruby
as they ranked as the top-four most popular scripting languages
according to the Stack Overflow 2023 Developer Survey [17]. For
Python and Ruby, we choose two alternative language implemen-
tations to demonstrate the self-adaptive capability of Reflecta for
different execution engines, even within a single language. All tar-
gets are compiled with AddressSanitizer [49] except for Ruby due
to incompatibility (ASAN executable crashes). We reuse existing or
create persistent drivers for all targets to improve the performance,
except for Nautilus that utilizes its own incompatible forkserver.
The edge coverage results are obtained off-line using a separately
built binary with SanitizerCoverage [16] instrumentation.
Baseline fuzzers.We choose three state-of-the-art scripting lan-
guage fuzzers as our baseline: Nautilus, PolyGlot, and Fuzzilli.
Unfortunately, we could not compare against SoFi as it was not
available as open source (as noted by related work [33, 34]). We also
compare to PyRTFuzz, as its dynamic refinement technique is simi-
lar to Reflecta’s use of reflection. We note, however, PyRTFuzz is
highly specialized towards CPython, requiring the sys.settrace
function, which requires a custom MicroPython build and is not
available for languages like JavaScript. We attempted to reproduce
PyRTFuzz’s results, but ran into compatibility issues when gener-
ating API specifications for Python 3.12. We present a best effort
replication and comparison against PyRTFuzz leveraging bugs re-
ported in their paper and their replication package on an older
Python 3.9 in Appendix D and Appendix E.

For Nautilus, we reuse the grammar provided in their repository
for PHP, JavaScript, and Ruby and adapt the Python grammar from
the ANTLR grammar repository [3] following their documentation.
Appendix B explains how we adapted the Python grammar. For
PolyGlot, we again adapt the grammar from the ANTLR repository
following the original paper and reuse the semantic annotation
for PHP provided in their artifact repository (since the semantic
annotation support of PolyGlot for other languages remains under
development as of this writing.) By default, we supply PolyGlot
with the initial programs created by Reflecta as the initial corpus
(following [21, 24]). We conduct a separate evaluation for PHP for
which PolyGlot provides an initial corpus (PolyGlot+C).

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Zhang et al.

Grammar specification statistics. Table 3 shows the statistics of
grammar specifications used in the evaluation, where the “Gram-
mar” and “Symbol” specify the number of grammar rules and sym-
bols (e.g., standard library methods) in the initial syntax. For Nau-
tilus and PolyGlot, we count the number of grammar rules and
symbols in the grammar specifications. For Fuzzilli and Reflecta,
we count the LoC of grammar statements and specified identi-
fiers in the IR lifters. We additionally include the LoC of semantic
annotations of Fuzzilli and PyRTFuzz as “Symbol”. We provide
snippets of grammar used by Reflecta, Nautilus, and PolyGlot,
and links to their full grammar in Appendix G. PyRTFuzz requires
static analysis of CPython’s APIs. Moreover, inference of runtime
types deviates from the description in the paper, with the artifact
suggesting potential need for manual specification [12]. Note that
PyRTFuzz does dynamic type refinement in CPython only once
before fuzzing, so polymorphic functions will be still tested with
a single static type signature (monomorphic). Reflecta, however,
does runtime reflection and type inference for polymorphic func-
tions, allowing for broader and deeper exploration. Importantly,
Reflecta starts with significantly smaller grammar than any other
fuzzers without any semantic information. We demonstrate how to
integrate other targets into Reflecta in Appendix C.
Evaluation configuration.We run all experiments on a cluster
node of a 16-core Intel Xeon 5218 CPU machines with 64GB of
memory (with hyper-threads disabled). Each fuzzing instance is
pinned to a single core using cpuset. The comparative experiments
are 24 hours and repeated eight times for each fuzzer-target pair.
The bug-finding fuzzing campaign is performed over an extended
span of three months. All bugs were found within 24 hours.

6.2 Semantic Correctness

To answer RQ1, we calculate the aggregate semantic correctness
rate of the produced programs similarly to other fuzzing papers
[29, 34, 37, 46]. For Reflecta and Fuzzilli, we divide the number
of correct executions (with the exit code zero) by the number of
total executions (accurate statistics recorded during fuzzing). For
PolyGlot and Nautilus, we replay the saved corpus after a 24-
hour campaign to calculate the correctness rate, similarly. For a
fair comparison, we exclude the duplicate minimized copies in
the Nautilus corpus, since the minimized copy and the original
saved input have the same coverage. Table 4 shows the correctness
rate of each fuzzer on different targets. Except for Fuzzilli on
V8 that utilizes heavily hand-tuned manual semantic annotations,
Reflecta achieves the highest correctness of 62.3%, while Nautilus
and PolyGlot only achieve 35.7% and 20.2%.

Nautilus PolyGlot Fuzzilli Reflecta

Ruby 34.8% 1116/3207 19.8% 421/2127 - 61.0%
MRuby 34.7% 821/2364 25.7% 397/1544 - 62.5%
CPython 28.3% 711/2513 14.0% 158/1127 - 53.1%
MicroPython 36.6% 1430/3907 22.3% 131/587 - 62.1%
PHP 40.1% 1966/4903 29.7% 1323/4455 - 70.8%
V8 39.3% 419/1066 9.8% 291/2973 67.7% 64.2%

Average 35.7% 20.2% 67.7% 62.3%

Table 4: Semantic correctness rate and Correct/Total ratio of

produced programs. -: Fuzzilli only supports JavaScript.

Wemanually inspected the corpus programs from Nautilus and
identified the following recurring reasons for its low correctness:
(1) dereference error, dereferencing a statically-provided list of at-
tributes that do not belong to an object and (2) type errors, calling
a method with wrongly-typed arguments. In contrast, Reflecta
does not suffer from such problems as it obtains precise seman-
tic information from reflection. In particular, Reflecta obtains
the valid attributes of a given object at runtime through reflection
and automatically deduces and exploits type-correct method signa-
tures using the 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 algorithm. PolyGlot reports to support
language semantics through a feature called semantic validation.
However, the feature is still under development and not supported
as of writing this paper. Moreover, the feature is not meant for dy-
namically typed languages such as most scripting languages, where
PolyGlot uses AnyType for any object types undecidable at static
time. This suggests that the feature would have caused semantic
incorrectness even if it were enabled

Incorrect programs produced by Reflecta are mainly due to
semantic requirements beyond type correctness. For example, meth-
ods and functions that require stateful invocation, ordering, and
arguments that expect a specific format of strings (e.g., xml). Such
requirements go beyond the capability of reflection and require ad-
ditional logic or manual intervention. Reflecta reports a relatively
lower correctness rate in CPython compared to other targets. This
is because of CPython’s relatively large standard library that slows
down method signature deduction to explore new signatures before
exploiting them. Moreover, Python is considered “more strongly-
typed” than Ruby, PHP, or JavaScript where implicit type casts and
coercion is common. This may also complicate type-correct signa-
ture deduction and cause relatively more type-incorrect executions.

Reflecta does not require prior knowledge of semantics and
achieves superior correctness compared to the state-of-the-art
language-general scripting language fuzzers. Reflecta is compara-
ble to specialized fuzzers with extensive manual semantic annota-
tions.

6.3 Code Coverage

To answerRQ2, wemeasure the edge coverage of each target fuzzed
by each fuzzer. Figure 6 shows the coverage growth over the 24
hours of fuzzing campaigns on various targets, where the shades
indicate a 95% confidence interval.
Languages with different implementations. Figure 6a and Fig-
ure 6b show the coverage growth of the fuzzers on two different
language implementations of the same language (Ruby vs. MRuby
and CPython vs. MicroPython), where Reflecta outperforms Nau-
tilus in reference implementations (Ruby and CPython) even more
than in the alternatives (MRuby and MicroPython). This is because
the reference implementations have larger standard libraries than
the alternatives, some of which are missed by the pre-engineered
grammar by Nautilus. Reflecta, on the other hand, automatically
scales the minimal syntax to all libraries and adapts itself to the
underlying execution engines. Reflecta-Sem shows the ablated Re-
flecta without type-correct mutations, showing that the semantic
correctness support significantly helps Reflecta reach deeper code.

REFLECTA: Reflection-based Scalable and Semantic Scripting Language Fuzzing ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

0 200 400 600 800 1000 1200 1400
Time (minutes)

0k

2k

4k

6k

8k

Co
ve

ra
ge

 (e
dg

es
)

MRuby

Nautilus
PolyGlot
Reflecta-Sem
Reflecta

0 200 400 600 800 1000 1200 1400
Time (minutes)

0k

5k

10k

15k

20k

25k

30k

Co
ve

ra
ge

 (e
dg

es
)

Ruby

Nautilus
PolyGlot
Reflecta-Sem
Reflecta

(a) Ruby

0 200 400 600 800 1000 1200 1400
Time (minutes)

0k

1k

2k

3k

4k

Co
ve

ra
ge

 (e
dg

es
)

MicroPython

Nautilus
PolyGlot
Reflecta-Sem
Reflecta

0 200 400 600 800 1000 1200 1400
Time (minutes)

0k

5k

10k

15k

20k

25k

Co
ve

ra
ge

 (e
dg

es
)

Python

Nautilus
PolyGlot
Reflecta-Sem
Reflecta

(b) Python

0 200 400 600 800 1000 1200 1400
Time (minutes)

0k

5k

10k

15k

20k

25k

30k

Co
ve

ra
ge

 (e
dg

es
)

PHP

Nautilus
PolyGlot
PolyGlot+C
Reflecta-Sem
Reflecta

(c) PHP

0 200 400 600 800 1000 1200 1400
Time (minutes)

0k

25k

50k

75k

100k

125k

150k

Co
ve

ra
ge

 (e
dg

es
)

V8

Fuzzilli
Nautilus
PolyGlot

Reflecta
Reflecta+Ext
Reflecta-Sem

(d) JavaScript

Figure 6: Edge coverage growth over 24 hours on different targets with 95% confidence intervals.

Target Globals Attributes Methods Explorations Per Fn.

Ruby 81 708 1,339 152
MRuby 67 453 808 486
CPython 63 2,349 2,377 129
MicroPython 20 102 293 6182
PHP 772 0 0 878
V8 48 353 304 170

Table 5: Median language features learned and explorations

per function by Reflecta across eight runs.

PolyGlot stopped discovering new coverage after few minutes
in every campaign, while we double-checked that all campaigns
terminated normally after 24 hours. Two relevant factors are: (1)
PolyGlot highly depends on the initial corpus for language fea-
tures (e.g., standard library symbols), which is also shown by the
high coverage gain in PHP (PolyGlot+C in Figure 6c) that uti-
lizes the initial corpus given by PolyGlot, in contrast to the other
targets with our generated initial corpus. (2) As noted in subsec-
tion 6.2, the semantic validation feature of PolyGlot is incomplete
in the publicly-available version, degrading the exploration capa-
bility significantly. This is supported by a similar coverage trend
in Reflecta-Sem, where Reflecta’s semantic correctness features
are disabled.

Figure 8 shows the coverage differential between Reflecta and
Nautilus on Ruby, where green and red indicate Reflecta and
Nautilus covering more edges than the other, respectively. An
interesting and yet surprising finding is that the implementation

843
526

413

Reflecta Nautilus

203

(incorrect)

Figure 7: Venn diagram of identifier names inMRuby learned

by Reflecta or specified by Nautilus.

of builtin functions and objects in the standard library make up
for a significant amount of scripting engine code. More perceived
and frequently used language features like control flow and class
definition/inheritance, have a relatively simple implementation (evi-
denced by relatively small size of vm.c and class.c in Figure 8), and
are often better tested due to exposure to more users. Overall, Re-
flecta covers more edges than Nautilus in most source code files,
which is consistent with the coverage plot in Figure 6. Especially,
Reflecta outperforms the most in standard library sources, such
as complex.c, numeric.{c,h}, and generator.c, demonstrating
how thoroughly Reflecta covers built-in methods with reflection.
Languages with intensive manual support. Figure 6c and Fig-
ure 6d show the coverage growth on the languages with intensive
manual supports for semantics by PolyGlot and Fuzzilli. For both
targets, Reflecta achieves comparable code coverage to the best

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Zhang et al.

ruby-sancov internal

core date

yarp

ripper

arithmetic nkf-utf8 socket

bigdecimal

objspace

missing

zlib

intern

encoding
generator fbuffer

fiddle

stringio

parser

enc
pathname

escape strscan console

util

psych

digest

ruby

etc

15.0.0
coverage

syslog

sha2

defs pty

list

compile.c bignum.c parse.y gc.c

string.c

io.c

array.c

vm_insnhelper.c

time.c

strftime.c

vm.c

regcomp.c

regparse.c

numeric.c complex.c regexec.c iseq.c file.c

hash.c

process.c

re.c

vm_core.h

thread.c

transcode.c variable.c ruby.c rational.c enum.c

vm_method.c

error.c

marshal.c

vm_eval.c

addr2line.c

object.c encoding.c ractor.c
enumerator.c

proc.c

range.c

vm_trace.c

iseq.h

vm_sync.h

class.c

io_buffer.c dir.c
thread_pthread.c

eval.c

st.c

insns.def

vm_backtrace.c

random.c

cont.c

pack.c sprintf.c rjit_c.rbinc eval_intern.h

struct.c node.c.erb thread_sync.c vm_args.c vm_callinfo.h

vsnprintf.c

load.c

symbol.c

signal.c

known_errors.inc

api_node.c.erb

node_dump.c

memory_view.c

rjit_c.rb ast.c node.c

yjit.c
weakmap.c regenc.c vm_dump.c

eval_error.c

rjit.c

transient_heap.c

rjit_c.c

vm.inc

shape.c

parse.c

regerror.c math.c id_table.c

ractor_core.h

insns_info.inc

scheduler.c

util.c

numeric.rb

eval_jump.c ractor.rb compar.c

debug.c

dln_find.c

array.rb

builtin.c symbol.h

hrtime.h

darray.h

kernel.rb

symbol.h value_type.h

gc.h

globals.h

fl_type.h

scan_args.h numeric.h

array.h

bignum.h

memory.h struct.h

hash.h

fixnum.h

bits.h
special_consts.h

ctype.h

string.h

imemo.h

range.h

abi.h

class.h

object.h

rational.h

rstring.h rarray.h

rbasic.h

date_core.c date_parse.c

date_strftime.c
date_strptime.c

yarp.c

compile.c serialize.c
regexp.c api_pack.c unescape.c

pack.c

parse.y

long.h int.h

long_long.h

nkf.c
raddrinfo.c

ancdata.c

constdefs.c

option.c

socket.c init.c

ifaddr.c

basicsocket.c

unixsocket.c

bigdecimal.c

objspace_dump.c
objspace.c

object_tracing.c

dtoa.c

zlib.c

error.h
string.h

encoding.h
generator.c fbuffer.h

pointer.c function.c

closure.c

stringio.c

−100

−50

0

50

100

C
o
v
e
r
a
g
e
 D

iff
e
r
e
n
t
ia

l
(
%

)

Figure 8: Coverage differential between Reflecta and Nautilus on Ruby. Top-level boxes: directories. Inner boxes: source

code files. Box size: the number of edges in the corresponding directory or file. Color: the coverage differential. The coverage

differential was calculated by (Edges(Reflecta) - Edges(Nautilus)) / Edges(Total)

configurations of PolyGlot and Fuzzilli even without any manual
semantic hints, and continues to expand the code coverage further
over time. PolyGlot, on the other hand, gains its coverage predom-
inantly from manual efforts (i.e., the initial corpus) and quickly hits
the coverage saturation point. Fuzzilli gains more coverage than
Reflecta on V8, and it turns out that the specialized JIT support
in Fuzzilli facilitates the JIT logic triggering.
Extended grammar through reflection. Table 5 shows the num-
ber of global objects, attributes, and distinct method signatures
that Reflecta learned through reflection during the campaign. Re-
flecta learned no attributes and methods in PHP as most standard
library methods in PHP are global; PHP was historically a proce-
dural language and adopted the object-oriented paradigm later. For
example, popping an element from an array from in PHP uses the
array_pop(arr) global function, whereas in JavaScript, Ruby and
Python it is expressed as arr.pop(). This explains the relatively
small margin between Reflecta and Nautilus on PHP.

Recall that Reflecta employs an 𝜖-greedy approach to contin-
uously explore learned method signatures. This means Reflecta
never definitively concludes that a given method or function is
fully explored, but rather continues to invoke it with new argu-
ment combinations throughout the entire campaign. We modified
Reflecta so that when it attempts to explore the signature of a

function or method—i.e., trying to invoke it with arguments of pre-
viously unseen types—it records these attempts in a global counter.
The last column of Table 5 shows the average number of times a
method/function is explored over a 24-hour period. We also dump
the learned signature map after each campaign and find that, for
the majority of functions/methods discovered (97.3%), fewer than
six polymorphic signatures are learned (fewer polymorphic signa-
tures requires fewer exploration trials). Furthermore, each function
or method is exercised at least 150 times throughout the fuzzing
process, ensuring extensive exploration of its behavior.

Figure 7 provides a comparative analysis of the language fea-
tures learned by Reflecta and specified by Nautilus for MRuby.
Reflecta learned a total of 67 globals, 453 attributes, and 808 meth-
ods, the union of which sums up to 1,256 identifier names (some
methods and attributes have the same name). In comparison, the
grammar specification of Nautilus for MRuby does not distin-
guish between global objects and methods and has a total 1,142
production rules for identifier names.

Interestingly, despite the total number of identifier names learned
by Reflecta and specified by Nautilus being similar, the intersec-
tion is only 413 (32.9% of all Reflecta learned identifiers). We fur-
ther investigated the MRuby grammar specification for Nautilus
and found out Nautilus includes some ambiguous identifiers in

REFLECTA: Reflection-based Scalable and Semantic Scripting Language Fuzzing ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

the grammar specification. For example, it contains identifiers such
as kh_del_{ht,iv,mt} that do not appear in the entire MRuby
source repository. In total, we discover 27.8% of the unique identi-
fiers in Nautilus’s MRuby grammar are incorrectly specified. We
assume they are artifacts of scraping the built-in names from the
documentation. Incorrect specifications lead to wasted execution
cycles in Nautilus, which explains the lower coverage gain as well
as a slower coverage growth rate.

With only the minimal core language syntax, Reflecta achieves
significantly better code coverage compared to SoTA language-
general scripting language fuzzers, as well as is comparable to
language-specific fuzzers with intensive manual semantic supports.

6.4 Discovered Bugs

To answer RQ3, we continuously ran Reflecta and other baseline
fuzzers over an extended period of three months during develop-
ment. Table 6 shows all bugs discovered by Reflecta. Reflecta
found a total of 25 unique bugs, including 8 in MRuby, 14 in Mi-
croPython, and 3 in PHP. Notice that MRuby and PHP have been
extensively fuzzed by both prior work [21, 32, 50] and the OSS-
Fuzz [10] continuous fuzzing platform. This showcases the deep
bug finding capability of Reflecta in diverse language execution
engines. Of the baseline fuzzers, only Nautilus discovered three
new bugs in MicroPython with the new manually specified gram-
mar provided by us. It’s noteworthy all bugs found by Nautilus
is a subset of the bugs found by Reflecta. Reflecta did not find
new bugs in V8. Mentioned in the section 4, Reflecta does not
generate any control flow structures, as they are orthogonal to the
semantic information provided by reflection. Most recent bugs in
V8 are in the JIT optimization pipeline [46]. This requires loops to
make code hot and trigger JIT optimization. Reflecta primarily
finds bugs in standard libraries, and allows for straight-forward
fuzzing of other scripting languages. We discuss this limitation in
the discussion section section 7. The following case studies (with
three additional case studies in Appendix F) explain how Reflecta
found them and why existing fuzzers missed them.
Case study: stack-overflow at mrb_vm_exec in MRuby. Fig-
ure 9 shows the minimized proof-of-concept program for the stack
overflow bug at mrb_vm_exec in MRuby. The program first creates
a lazy iterator over an empty dictionary (line 2) and makes a circular
reference to itself using args= and filter_map (lines 5-6). Finally,
it triggers an iteration by calling the countmethod, causing a stack
overflow due to the infinite internal dereference (line 9).

Nautilus failed to find this bug as its grammar specification did
not include the filter_map and args= methods, showing that a
human-written grammar is prone to under-specification; missing
method names can lead to missing potential bugs as shown here.
PolyGlot similarly missed this bug as the initial corpus did not
contain such methods. On the other hand, Reflecta discovered
this bug thanks to two major reasons. First, Reflecta automatically
recognized args= and filter_map through reflection, which made
testing such methods possible to begin with. Second, Reflecta
learned the correct method signature for args= that accepts one
iterator type, which allowed Reflecta to quickly test the method
with correct semantics. The type-enhanced corpus feedback also

Target Bug ID Bug Type Crash Location Status

MRuby

6051 null-deref mrb_addrinfo_unix_path Fixed
6052 null-deref mrb_vm_exec Fixed
6065 null-deref eval_under Fixed
6066 null-deref mrb_struct_to_h Fixed
- heap-uaf ary_rotate_bang Fixed
- heap-uaf ary_compact_bang Fixed

6067 null-deref mrb_string_value_cstr Fixed
6068 stack-over mrb_vm_exec Confirmed

MicroPython

12522 null-deref mp_reader_new_file Fixed
12528 heap-buf mpz_as_bytes Confirmed
12532 global-buf mp_get_stream_raise Confirmed
12543 heap-uaf __bt_get Fixed
12562 null-deref mvlsb_fill_rect Fixed
12587 global-buf mp_vfs_umount Confirmed
12605 heap-buf mp_seq_multiply Confirmed
12605 null-deref mp_obj_equal_not_equal Confirmed
12660 heap-buf mpz_hash Fixed
12670 segfault vfs_posix_file_ioctl Confirmed
12702 global-buf uctypes_struct_agg_size Fixed
12735 segfault decompress_error_text_maybe Confirmed
12776 global-buf task_push_queue Confirmed
12830 global-buf mp_obj_class_lookup Fixed

PHP
- null-deref zend_hash_clean Fixed
- null-deref zif_forward_static_call Fixed
- null-deref zif_func_num_args Fixed

Table 6: Unique bugs found by Reflecta. Bug ID: issue num-

ber. -: Reported through GitHub Security Advisories

1 # Step 1: Create a lazy iterator over an empty dict.
2 it = {}. lazy()
3 # Step 2: Create a circular reference.
4 it.args=(it)
5 fmap = it.filter_map ()
6 # Step 3: Use the iterator , causing a stack overflow.
7 fmap.count()

Figure 9: Minimized proof-of-concept program for the stack

overflow bug at mrb_vm_exec in MRuby.

enabled faster discovery of this bug as the iterator type occurs less
frequently than common literals like strings and integers.

Thanks to automatic scalability and high semantic correctness,
Reflecta found 25 unique bugs in MRuby, MicroPython, and PHP,
which have not been found by any existing fuzzers or OSSFuzz.

7 Limitation and Discussion

Covered language features. Reflecta does not generate explicit
control flow structure (e.g., loops, conditionals, or functions) which
would often lead to dead code, resulting in wasted fuzzing cycles
and lower coverage. However, not generating control flow struc-
tures entirely prevents Reflecta from finding certain bugs like
JIT optimization bugs (subsection 6.4). Several approaches have
been proposed to address this issue: (1) avoiding control flow con-
structs altogether by excluding them from the grammar specifi-
cation [21, 50]; (2) carefully generating control flow conditions
and verifying their validity statically [34, 43]; or (3) relying on
predefined templates or seed corpora to guide fuzzing [37, 51, 59].
Reflecta complements these mechanisms by providing a strong
foundation of semantic correctness, instead of directly mitigating
the challenges of generating control flow structures.

Regarding more specific language features, such as prototypical
inheritance in JavaScript, these constructs may still require addi-
tional manual effort. Nonetheless, since Reflecta provides a solid

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Zhang et al.

base fuzzer across multiple scripting languages, it can be extended
to handle more features with further refinement.
Broader application of reflection. The primary threat to our
evaluation concerns the selection of fuzzing targets and the gener-
alizability of our findings. To mitigate this risk, we chose the top
four popular scripting languages, including four standard and two
alternative implementations. We demonstrate how much effort is
necessary to support a new execution engine (i.e., SpiderMonkey
in Appendix C) and also verified that less popular scripting lan-
guages (e.g., Lua, Perl, and R) support reflection and can similarly
benefit from Reflecta as-is with only minor engineering costs (i.e.,
providing minimal syntax and reflection wrappers).

Besides scalability and semantic correctness, reflection can also
improve other aspects of scripting language fuzzing. For efficiency,
reflection helps in corpus scheduling [25, 44, 57] by prioritizing
programs with rare types or attributes. Spending more energy on
interesting programs may allow fuzzers to explore the program
space faster. For testing completeness, reflection can explore the dy-
namic side of scripting languages, such as deleting object attributes
or redefining methods at runtime. This may reveal invalid assump-
tions of execution engines about the shape of objects, which have
historically caused many vulnerabilities in JavaScript engines [35].

8 Related Work

Language-specific fuzzing. To support a language-specific gram-
mar, early research mainly focused on a targeted language.
CSmith [55] generates C programs without undefined behaviors
using manual expert knowledge on the C grammar. Inspired by
CSmith, the EMI class of fuzzers [43, 51, 59], find bugs in compil-
ers by introducing semantic preserving mutations, also known as
metamorphic testing [27]. PyRTFuzz [45] fuzzes Python runtime
libraries through the tracing module and leveraging the CPython
unit test suite. As an orthogonal testing oracle aspect, language
fuzzers [23] might also leverage differential testing (by comparing
different implementations and configurations) to detect correctness
bugs, in addition to finding crashes and memory corruptions. Spe-
cialized JavaScript fuzzers [37, 38, 46] adopt a similar approach to
CSmith. The language-specific approach, while allowing for more
manual control and covering specific language features more deeply,
unfortunately, does not scale to multiple languages. Reflecta, on
the other hand, provide a good starting point when testing new
languages and implementations.
Language-general fuzzing. Some language-general fuzzers [21,
47, 50, 53] are compatible with multiple languages. Nautilus com-
bined grammar with coverage feedback to improve program gener-
ation and mutation. Gramatron constructs grammar automatons
and performs more aggressive mutations to trigger complex bugs
faster. These proposals still suffer from the language scalability
issue as they still require full-blown manual grammar specifica-
tions with constant updates. PolyGlot supports semantic-aware
program mutation for general languages, but it was not designed
for dynamic languages (i.e., scripting languages), hence is prone to
produce incorrect programs.
Syntax inference. Automatic specification inference for language
fuzzing mostly focuses on generating syntactically correct inputs.

Grimoire [24] uses input generalization to automatically synthe-
size the structure of inputs. Glade [22] is an iterative algorithm
to automatically infer a context-free grammar. Autogram [39], on
the other hand, uses taint analysis for grammar inference. However,
they only enforce the syntactic correctness of the produced pro-
grams. Reflecta, on the other hand, enforces semantic information
from the target language, generating semantically correct programs
that are more likely to trigger bugs.
Semantics inference. Specification inference is studied at a more
semantic level outside language fuzzing. In OS kernel fuzzing, re-
searchers have attempted to auto-generate system call specifica-
tions by applying static and dynamic analysis techniques [28, 30,
36, 52]. In library fuzzing, researchers attempted to infer the cor-
rect library call sequence by analyzing library code and its applica-
tions [26, 40, 41, 58]. Existing work on OS kernel and library fuzzing
typically assumes static typing (C/C++) and have relatively fixed
behavior patterns (e.g., memory and resources must be allocated
before use and freed only once). In contrast, scripting languages,
with their dynamic typing and more fluid execution models, do not
conform to such rigid structures, and thus such techniques cannot
be applied to scripting language fuzzing.

9 Conclusion

Reflecta introduces a scalable and semantic-aware approach for
fuzzing scripting languages. We achieve this generality through
runtime reflection instrumentation, which enables type-aware mu-
tation. Our evaluation shows that Reflecta outperforms state-of-
the-art language-general scripting language fuzzers in terms of code
coverage and semantic correctness, and is even comparable to heav-
ily hand-tuned language-specific fuzzers. During our evaluation,
Reflecta also discovered 25 bugs in popular scripting language
engines, showcasing its real-world effectiveness.

Acknowledgments

We thank Florian Hofhammer, Nicolas Badoux, the rest of the Hex-
Hive, and the anonymous reviewers for their detailed feedback.
This work was supported, in part, by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and
innovation program (grant agreement No. 850868), SNSF PCEGP2
186974, a gift from Intel Corporation, and funding from BMK,
BMAW, and the State of Upper Austria in the frame of the COMET
Module DEPS (grant no. 888338) managed by FFG.

References

[1] [n. d.]. Heap hardening Issue 14083 php/php-src — github.com. https://github.
com/php/php-src/issues/14083. [Accessed 19-12-2024].

[2] 2019. PHP Remote Code Execution Vulnerability (CVE-2019-11043).
https://blog.qualys.com/product-tech/2019/10/30/php-remote-code-execution-
vulnerability-cve-2019-11043.

[3] 2023. Antlr/Grammars-v4: Grammars Written for ANTLR v4; Expectation That
the Grammars Are Free of Actions. https://github.com/antlr/grammars-v4.

[4] 2023. ECMA-262.
[5] 2023. HHVM. http://hhvm.com/.
[6] 2023. LCOV - Unix_coverage_v1.21.0-199-Gcc8fc450a.Info.

https://micropython.org/resources/code-coverage/.
[7] 2023. libFuzzer – a Library for Coverage-Guided Fuzz Testing. — LLVM 17.0.0git

Documentation. https://llvm.org/docs/LibFuzzer.html.
[8] 2023. Memory Error in Calendar.Isleap · Issue #103687 · Python/Cpython.

https://github.com/python/cpython/issues/103687.
[9] 2023. Mruby. https://mruby.org/.

https://github.com/php/php-src/issues/14083
https://github.com/php/php-src/issues/14083

REFLECTA: Reflection-based Scalable and Semantic Scripting Language Fuzzing ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

[10] 2023. OSS-Fuzz: Continuous Fuzzing for Open Source Software. Google.
[11] 2023. PHP: Hypertext Preprocessor. https://www.php.net/index.php.
[12] 2023. PyRTFuzz/Apispec/PySpec/StcSpec/Pyspec/Apispec_openai_generator.Py

at Master · Awen-Li/PyRTFuzz. "https://github.com/awen-li/PyRTFuzz/blob/
master/apispec/PySpec/StcSpec/pyspec/apispec_openai_generator.py".

[13] 2023. RecursionError in Pyclbr.Readmodule_ex · Issue #103864 · Python/Cpython.
https://github.com/python/cpython/issues/103864.

[14] 2023. Reflective Programming. Wikipedia (Jan. 2023).
[15] 2023. Ruby Programming Language. https://www.ruby-lang.org/en/.
[16] 2023. SanitizerCoverage — Clang 18.0.0git Documentation.

https://clang.llvm.org/docs/SanitizerCoverage.html.
[17] 2023. Stack Overflow Developer Survey 2023.

https://survey.stackoverflow.co/2023/?utm_source=social-
share&utm_medium=social&utm_campaign=dev-survey-2023.

[18] 2023. Welcome to Python.Org. https://www.python.org/.
[19] 2024. MicroPython - Python for Microcontrollers. http://micropython.org/.
[20] 2024. Nginx/Njs. nginx.
[21] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,

Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS: Fishing for Deep
Bugs with Grammars. In Proceedings 2019 Network and Distributed System Security
Symposium (NDSS’19). Internet Society, San Diego, CA. https://doi.org/10.14722/
ndss.2019.23412

[22] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2017. Synthesizing
Program Input Grammars. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’17). ACM, Barcelona
Spain, 95–110. https://doi.org/10.1145/3062341.3062349

[23] Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko, and
Thorsten Holz. 2022. JIT-Picking: Differential Fuzzing of JavaScript Engines.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS’22). ACM, Los Angeles CA USA, 351–364. https:
//doi.org/10.1145/3548606.3560624

[24] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel, Ali Abbasi, Sergej Schu-
milo, SimonWörner, and ThorstenHolz. 2019. GRIMOIRE: Synthesizing Structure
While Fuzzing. In 28th USENIX Security Symposium (Security’19). 1985–2002.

[25] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2019. Coverage-
Based Greybox Fuzzing as Markov Chain. IEEE Transactions on Software Engi-
neering 45, 5 (May 2019), 489–506. https://doi.org/10.1109/TSE.2017.2785841

[26] Peng Chen, Yuxuan Xie, Yunlong Lyu, Yuxiao Wang, and Hao Chen. 2023. HOP-
PER: Interpretative Fuzzing for Libraries. https://doi.org/10.48550/arXiv.2309.
03496 arXiv:2309.03496 [cs]

[27] T. Y. Chen, S. C. Cheung, and S. M. Yiu. 2020. Metamorphic Testing: A New
Approach for Generating Next Test Cases. https://doi.org/10.48550/arXiv.2002.
12543 arXiv:2002.12543 [cs]

[28] Weiteng Chen, Yu Wang, Zheng Zhang, and Zhiyun Qian. 2021. SyzGen: Auto-
mated Generation of Syscall Specification of Closed-Source macOS Drivers. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS’21). Association for Computing Machinery, New York, NY,
USA, 749–763. https://doi.org/10.1145/3460120.3484564

[29] Yongheng Chen, Rui Zhong, Hong Hu, Hangfan Zhang, Yupeng Yang, Dinghao
Wu, and Wenke Lee. 2021. One Engine to Fuzz’em All: Generic Language Proces-
sor Testing with Semantic Validation. In 2021 IEEE Symposium on Security and
Privacy (SP’21). 642–658. https://doi.org/10.1109/SP40001.2021.00071

[30] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Shuang
Hao, Christopher Kruegel, and Giovanni Vigna. 2017. DIFUZE: Interface Aware
Fuzzing for Kernel Drivers. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (CCS’17). Association for Computing
Machinery, New York, NY, USA, 2123–2138. https://doi.org/10.1145/3133956.
3134069

[31] Author eyalitkin. 2017. MRuby VM Escape – Step by Step.
[32] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++ :

Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on
Offensive Technologies (WOOT’20).

[33] fuzz-evaluator. 2023. Artifact Evaluation: SoFi.
[34] Samuel Groß, Simon Koch, Lukas Bernhard, Thorsten Holz, and Martin Johns.

2023. FUZZILLI: Fuzzing for JavaScript JIT Compiler Vulnerabilities. In 30th
Annual Network and Distributed System Security Symposium, NDSS 2023, San Diego,
California, USA, February 27 - March 3, 2023 (NDSS’23). The Internet Society.

[35] Choongwoo Han. 2023. Case Study of JavaScript Engine Vulnerabilities.
[36] HyungSeok Han and Sang Kil Cha. 2017. IMF: Inferred Model-based Fuzzer. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS’17). Association for Computing Machinery, New York, NY, USA,
2345–2358. https://doi.org/10.1145/3133956.3134103

[37] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. 2019. CodeAlchemist:
Semantics-Aware Code Generation to Find Vulnerabilities in JavaScript Engines.
In 26th Annual Network and Distributed System Security Symposium, NDSS 2019,
San Diego, California, USA, February 24-27, 2019 (NDSS’19). The Internet Society.

[38] Xiaoyu He, Xiaofei Xie, Yuekang Li, Jianwen Sun, Feng Li, Wei Zou, Yang Liu, Lei
Yu, Jianhua Zhou,Wenchang Shi, andWei Huo. 2021. SoFi: Reflection-Augmented

Fuzzing for JavaScript Engines. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security (CCS’21). ACM, Virtual Event Republic
of Korea, 2229–2242. https://doi.org/10.1145/3460120.3484823

[39] Matthias Höschele and Andreas Zeller. 2016. Mining Input Grammars from
Dynamic Taints. In 2016 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE’16). 720–725.

[40] Kyriakos Ispoglou, Daniel Austin, Vishwath Mohan, and Mathias Payer. 2020.
FuzzGen: Automatic Fuzzer Generation. In 29th USENIX Security Symposium
(Security’20). 2271–2287.

[41] Bokdeuk Jeong, Joonun Jang, Hayoon Yi, Jiin Moon, Junsik Kim, Intae Jeon,
Taesoo Kim, WooChul Shim, and Yong Ho Hwang. 2023. UTopia: Automatic
Generation of Fuzz Driver Using Unit Tests. In 2023 IEEE Symposium on Security
and Privacy (SP’23). 2676–2692. https://doi.org/10.1109/SP46215.2023.10179394

[42] Yuancheng Jiang, Chuqi Zhang, Bonan Ruan, Jiahao Liu, Manuel Rigger, Roland
Yap, and Zhenkai Liang. 2024. Fuzzing the PHP Interpreter via Dataflow Fusion.
arXiv:2410.21713 [cs.CR] https://arxiv.org/abs/2410.21713

[43] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding Deep Compiler Bugs via
Guided Stochastic Program Mutation. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’15). ACM, Pittsburgh PA USA, 386–399. https://doi.
org/10.1145/2814270.2814319

[44] Caroline Lemieux and Koushik Sen. 2018. FairFuzz: A Targeted Mutation
Strategy for Increasing Greybox Fuzz Testing Coverage. In Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering
(ASE’18). Association for Computing Machinery, New York, NY, USA, 475–485.
https://doi.org/10.1145/3238147.3238176

[45] Wen Li, Haoran Yang, Xiapu Luo, Long Cheng, and Haipeng Cai. 2023. PyRTFuzz:
Detecting Bugs in Python Runtimes via Two-Level Collaborative Fuzzing. In
Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security (CCS’23). Association for Computing Machinery, New York, NY, USA,
1645–1659. https://doi.org/10.1145/3576915.3623166

[46] Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. 2020. Fuzzing
JavaScript Engines with Aspect-preserving Mutation. In 2020 IEEE Symposium on
Security and Privacy (SP’20). 1629–1642. https://doi.org/10.1109/SP40000.2020.
00067

[47] Van-Thuan Pham, Marcel Böhme, Andrew E. Santosa, Alexandru Răzvan Că-
ciulescu, and Abhik Roychoudhury. 2021. Smart Greybox Fuzzing. IEEE
Transactions on Software Engineering 47, 9 (Sept. 2021), 1980–1997. https:
//doi.org/10.1109/TSE.2019.2941681

[48] Christopher Salls, Chani Jindal, Jake Corina, Christopher Kruegel, and Giovanni
Vigna. 2021. Token-Level Fuzzing. In 30th USENIX Security Symposium (Secu-
rity’21). 2795–2809.

[49] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In 2012 USENIX
Annual Technical Conference (ATC’12). 309–318.

[50] Prashast Srivastava and Mathias Payer. 2021. Gramatron: Effective Grammar-
Aware Fuzzing. In Proceedings of the 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA’21). ACM, Virtual Denmark, 244–256.
https://doi.org/10.1145/3460319.3464814

[51] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding Compiler Bugs via
Live Code Mutation. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’16). Association for Computing Machinery, New York, NY, USA, 849–
863. https://doi.org/10.1145/2983990.2984038

[52] Hao Sun, Yuheng Shen, Jianzhong Liu, Yiru Xu, and Yu Jiang. 2022. KSG: Aug-
menting Kernel Fuzzing with System Call Specification Generation. In 2022
USENIX Annual Technical Conference (ATC’22). 351–366.

[53] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-
Aware Greybox Fuzzing. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE’19). 724–735. https://doi.org/10.1109/ICSE.2019.00081

[54] Junjie Wang, Zhiyi Zhang, Shuang Liu, Xiaoning Du, and Junjie Chen. 2023.
FuzzJIT: Oracle-Enhanced Fuzzing for JavaScript Engine JIT Compiler. (2023).

[55] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Under-
standing Bugs in C Compilers. ACM SIGPLAN Notices 46, 6 (June 2011), 283–294.
https://doi.org/10.1145/1993316.1993532

[56] Qi Deng Yiheng An, Haozhe Zhang. [n. d.]. Vulnerabilities in LangChain Gen AI
— unit42.paloaltonetworks.com. https://unit42.paloaltonetworks.com/langchain-
vulnerabilities/. [Accessed 19-12-2024].

[57] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai Lu, and Xu Zhou. 2020.
EcoFuzz: Adaptive Energy-Saving Greybox Fuzzing as a Variant of the Adversarial
Multi-Armed Bandit. In 29th USENIX Security Symposium (Security’20). 2307–
2324.

[58] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and Mayur Naik.
2016. APISAN: Sanitizing API Usages through Semantic Cross-checking. (2016).

[59] Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal Program Enu-
meration for Rigorous Compiler Testing. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’17). ACM,
Barcelona Spain, 347–361. https://doi.org/10.1145/3062341.3062379

https://github.com/awen-li/PyRTFuzz/blob/master/apispec/PySpec/StcSpec/pyspec/apispec_openai_generator.py
https://github.com/awen-li/PyRTFuzz/blob/master/apispec/PySpec/StcSpec/pyspec/apispec_openai_generator.py
https://doi.org/10.14722/ndss.2019.23412
https://doi.org/10.14722/ndss.2019.23412
https://doi.org/10.1145/3062341.3062349
https://doi.org/10.1145/3548606.3560624
https://doi.org/10.1145/3548606.3560624
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.48550/arXiv.2309.03496
https://doi.org/10.48550/arXiv.2309.03496
https://arxiv.org/abs/2309.03496
https://doi.org/10.48550/arXiv.2002.12543
https://doi.org/10.48550/arXiv.2002.12543
https://arxiv.org/abs/2002.12543
https://doi.org/10.1145/3460120.3484564
https://doi.org/10.1109/SP40001.2021.00071
https://doi.org/10.1145/3133956.3134069
https://doi.org/10.1145/3133956.3134069
https://doi.org/10.1145/3133956.3134103
https://doi.org/10.1145/3460120.3484823
https://doi.org/10.1109/SP46215.2023.10179394
https://arxiv.org/abs/2410.21713
https://arxiv.org/abs/2410.21713
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/3576915.3623166
https://doi.org/10.1109/SP40000.2020.00067
https://doi.org/10.1109/SP40000.2020.00067
https://doi.org/10.1109/TSE.2019.2941681
https://doi.org/10.1109/TSE.2019.2941681
https://doi.org/10.1145/3460319.3464814
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1109/ICSE.2019.00081
https://doi.org/10.1145/1993316.1993532
https://unit42.paloaltonetworks.com/langchain-vulnerabilities/
https://unit42.paloaltonetworks.com/langchain-vulnerabilities/
https://doi.org/10.1145/3062341.3062379

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Zhang et al.

A Reflection Wrapper Implementation

All reflection information for reflection wrappers directly corre-
sponds to specific reflection calls. Table 7 shows the reflection calls
of each language to provision the corresponding reflection infor-
mation.

Wrapper

Language

JavaScript Python

enum() Object.getOwnPropertyNames(†) dir(_builtins_)
refl(o) Type o.constructor.name type(o)

Attrs Object.getOwnPropertyNames(o) dir(o)
Arity o.length inspect.signature(o)
Call? typeof o == function" callable(o)

Wrapper PHP Ruby

enum()
get_defined_
{functions,constants,vars}()

global_variables,
Object.constants

refl(o) Type get_class(o) o.class
Attrs get_object_vars(o) o.{method,class.constants}
Arity ReflectionFunction(o) o.parameters
Call? is_callable(o) o.respond_to? :call

Table 7: Utilized reflection APIs for reflection wrappers in

each language. †: globalThis.

B Adapting Context-dependent Python

Grammar

Note that the syntax of Python is not context-free due to the inden-
tation rule. This can be resolved at the lexical stage by introducing
two special tokens: INDENT and DEDENT, which act similarly to curly
braces that enclose the indented block. We modify the Python gram-
mar to produce INDENT and DEDENT verbatim in the generated code
and then augment our fuzzing driver to replace these two tokens
with the correct indentation before passing to the interpreter for
execution.

C Extending Reflecta to more targets

Here we demonstrate how easy it is to integrate JavaScriptCore
and SpiderMonkey. As mentioned before, Reflecta requires only
two pieces of minor, non-increasing manual effort: core syntax and
reflection wrapper. Fortunately, V8, JavaScript, and SpiderMonkey
implement the same ECMA-262 language specification [4], meaning
both the core syntax and reflection wrapper could be used with-
out modification. Only minor changes were done to the harness
(∼ 30 loc), so that the generated program could write reflection
information to a memory-backed file. No other modification was
needed for the fuzzer, and integration was done in an afternoon.
In the end, Reflecta achieved 13.54% and 14.21% edge coverage
for JavaScriptCore and SpiderMonkey respectively (starting from
scratch and repeated 8 times for 24 hours). Reflecta adapts to
different implementations with little effort, with zero changes to
the core fuzzing loop. Note when extending to different languages,
the manual effort is also low, from Table 3 we anticipate around
80 loc of addition of the core syntax, and implementing two wrap-
per function in the target language. This highlights Reflecta’s
capability to scale to multiple language with minimal manual effort.

D Reproducing bugs found by PyRTFuzz

In an attempt to reproduce the bugs found by PyRTFuzz, we first
analyzed its bug reports and discovered inconsistencies. We noted

that the majority of the bugs (44 out of 61 bugs reported) reports
by PyRTFuzz are unhandled exceptions raised by the interpreter.
Such reports are not considered bugs because the interpreter exits
gracefully when an exception is thrown and is considered the ex-
pected behavior [8, 13]. Of the remaining 17 reports, there are 7 out-
of-memory errors, 5 hangups and 5 stack overrun, which may be
considered as DoS vulnerabilities but have limited exploitability. We
observed that all bug reports of PyRTFuzz have been closed by the
CPython developers. In contrast, reflecta does count them as bugs
and only report testcases that are terminated by signal SIGSEGV to
the developers. The global-buffer-overflow, heap-buffer-overflows,
and use-after-frees we discovered are potentially exploitable and
can be used to launch remote code execution attacks in a sandboxed
environment.

E Reproducing PyRTFuzz’s coverage

0 200 400 600 800 1000 1200 1400
Time (minutes)

20k

20k

21k

21k

22k

22k

23k

23k

Co
ve

ra
ge

 (e
dg

es
)

Python
pyrtfuzz

Note in PyRTFuzz’s paper, the authors did not detail how they
measured coverage. We follow the stand practice of replaying the
corpus after campaign and measure edges covered in CPython
using a SanitizerCoverage instrumented binary. The experiment is
repeated 8 times and lasted 24 hours (in line with other experiments
in the evaluation). Our reproduced coverage growth shows that
most of CPython’s code are covered by the generated initial seeds,
and mutation did not significantly improve coverage (from 22k
edges to 23k edges), which deviates from Figure 8 in PyRTFuzz’s
paper.

F Extra Case Studies

Here we showcase more case studies to demonstrate that reflecta
can find various types of bugs in Micorpython, PHP, and MRuby.

Figure 10 shows the minimized proof-of-concept program for the
global buffer overflow bug at task_push_queue in MicroPython.
The program simply attempts to push an item to the waiting queue
of an asyncio.Event instance, which eventually causes a global
buffer overflow when updating the queue.

The uniqueness of this bug is that the waiting method of an
asyncio.Event instance is neither present in CPython (reference
impl.) nor part of the public API, which explains why this simple
bug has evaded the unit test suite covering 98.5% [6] of the entire

REFLECTA: Reflection-based Scalable and Semantic Scripting Language Fuzzing ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

1 import asyncio , io
2 v1 = asyncio.Event ();
3 v2 = v1.waiting;
4 v2.push(io);

Figure 10: Minimized proof-of-concept program for the

global buffer overflow bug at task_push_queue in MicroPy-

thon.

MicroPython source code. Furthermore, this bug also reconfirms the
completeness concern of manual specifications. Particularly, since
the waiting method of an asyncio.Event is both MicroPython-
specific and outside of the well-documented public APIs, any man-
ual grammar specifications not tailored to MicroPython or only
considering documented features are destined to miss this bug.

1 v1 = Range.methods ();
2 v1.shift ();
3 v1.rotate !();

Figure 11: Minimized proof-of-concept program for the use-

after-free bug at ary_rotate_bang in MRuby

The root cause of this bug stems from an internal space opti-
mization in MRuby. When shifting an array larger than 20 elements
(as returned by Range.methods()), MRuby opts to return a slice of
the original array and marks it as SHARED, rather than physically
moving all elements one-by-one. The rotate! method, however,
attempts to rotate the array in place. To do this, it must create a
private copy and may free the old buffer if there is only a single
reference to the slice. Due to a developer oversight, the old buffer
pointer—now freed—was still used after the new private copy was
created, causing a use-after-free. Although the proof-of-concept is
straightforward, both Nautilus and PolyGlot failed to trigger this
bug because their grammars included rotate but not rotate!. This
omission likely resulted from imperfect documentation scraping.

1 // global enumeration
2 $v0 = get_defined_functions ();
3 $v1 = $v0 [283]
4 $v2 = $v0[3]
5 // is_callable($v1): true
6 // class_of($v2): "string"
7 $v0($v2);

Figure 12: Minimized proof-of-concept program for the null-

dereference bug at zif_func_num_args in PHP

The root cause of this PHP bug lies in the assumption that
func_get_args is always called inside a user-defined variadic func-
tion to determine the number of arguments passed. Under normal
circumstances, this function expects an outer call frame stored in the
global variable EX(prev_execute_data). However, when it is in-
voked by the runtime via register_shutdown_function—which
does not create an outer call frame—a null-dereference occurs due
to the missing context.

Reflecta uncovered this bug by first enumerating all
defined functions using get_defined_functions, then
recording the string "func_get_arg", and finally discover-
ing that register_shutdown_function is callable and accepts
strings as arguments. Interestingly, in PHP, a string can be
called as a function if its contents match a defined function
name. While Nautilus includes both func_get_arg and
unregister_shutdown_function in its grammar, it cannot
produce this specific bug because it only allows direct function
calls like unregister_shutdown_function(...) and not string
literals such as "unregister_shutdown_function". Similarly,
PolyGlot failed to expose the bug because neither function was
available through its grammar or semantics. By contrast, reflecta
not only discovered these functions via global enumeration but
also realized that one is callable and the other is a string, enabling
it to trigger the bug.

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Zhang et al.

G Grammar Snippets

⟨program⟩ ::= ⟨statement⟩*

⟨var⟩ ::= v[0-9]+

⟨statement⟩ ::= ⟨loadInteger⟩ | ⟨loadBigInt⟩ | ⟨loadFloat⟩ |
⟨loadString⟩ | ⟨loadBoolean⟩ | ⟨loadBuiltin⟩ | ⟨getProperty⟩
| ⟨callFunction⟩ | ⟨callMethod⟩ | ⟨unaryOperation⟩ |
⟨binaryOperation⟩ | ⟨ternaryOperation⟩ | ⟨reassign⟩ | ⟨update⟩
| ⟨dup⟩ | ⟨compare⟩ | ⟨eval⟩ | ⟨print⟩

⟨binaryOperation⟩ ::= ⟨var⟩ ⟨operator⟩ ⟨var⟩

⟨operator⟩ ::= + | - | * | / | % | & | && | || | ^ | « | » | **

Figure 13: Conceptual core grammar of Reflecta. State-

ments are implemented as FuzzIL instructions, and the list

of supported IL instructions are listed below. Representa-

tion and lifting of IL instructions can be found here: https:

//github.com/HexHive/Reflecta

Currently, Reflecta implements minimal grammars in Fuzzilli
lifters using a subset of Fuzzilli IR opcodes. Figure 14 shows the
list of implemented opcodes.

1 case .loadInteger(let op):
2 case .loadBigInt(let op):
3 case .loadFloat(let op):
4 case .loadString(let op):
5 case .loadBoolean(let op):
6 case .loadBuiltin(let op):
7 case .getProperty(let op):
8 case .callFunction:
9 case .callMethod(let op):
10 case .unaryOperation(let op):
11 case .binaryOperation(let op):
12 case .ternaryOperation:
13 case .reassign:
14 case .update(let op):
15 case .dup:
16 case .compare(let op):
17 case .eval(let op):
18 case .print:

Figure 14: Implemented Fuzzilli IR opcodes.

1 ctx.rule(u'START ',u'<?php\n$a = NULL;\n$b = NULL;\n$c = NULL;\
n$d = NULL;\ nsrand (1337) ;\n{PROGRAM}?>')

2 ctx.rule(u'PROGRAM ',u'{ STATEMENT };\n{PROGRAM}')
3 ctx.rule(u'PROGRAM ',u'')
4 ctx.rule(u'STATEMENT ',u'function {FUNCTION }({ ARGS})\n{PROGRAM

}}')
5 ctx.rule(u'STATEMENT ',u'{VAR} = {FUNCTION }({ ARGS}) ')
6 ctx.rule(u'STATEMENT ',u'{VAR} = {VAR}->{FUNCTION }({ ARGS}) ')
7 ctx.rule(u'STATEMENT ',u'{VAR} = {CLASS}->{FUNCTION }({ ARGS}) ')
8 ctx.rule(u'STATEMENT ',u'{VAR} = {VAL}')
9 ctx.rule(u'STATEMENT ',u'return {VAR}')
10 ctx.rule(u'STATEMENT ',u'raise {VAR}')
11 ctx.rule(u'STATEMENT ',u'yield {VAR}')
12 ctx.rule(u'STATEMENT ',u'continue {VAR}')
13 ctx.rule(u'STATEMENT ',u'break {VAR}')
14 ctx.rule(u'STATEMENT ',u'next {VAR}')

Figure 15: Snippets of Nautilus’s PHP grammar, the full

grammar can be found at https://github.com/nautilus-fuzz/

nautilus/blob/mit-main/grammars/php_custom.py

1 parser grammar PhpParser;
2
3 options { tokenVocab=PhpLexer; contextSuperClass =

PolyGlotRuleContext; }
4
5 @parser :: header {
6 #include "polyglot_rule_context.h"
7 }
8
9 program
10 : Shebang? (inlineHtml | phpBlock)* EOF
11 ;
12
13 inlineHtml
14 : htmlElement+
15 | scriptText
16 ;
17
18 htmlElement
19 : HtmlDtd
20 | HtmlClose
21 | HtmlStyleOpen
22 | HtmlOpen
23 | HtmlName
24 | HtmlSlashClose
25 | HtmlSlash
26 | HtmlText
27 | HtmlEquals
28 | HtmlStartQuoteString
29 | HtmlEndQuoteString
30 | HtmlStartDoubleQuoteString
31 | HtmlEndDoubleQuoteString
32 | HtmlHex
33 | HtmlDecimal
34 | HtmlQuoteString
35 | HtmlDoubleQuoteString

Figure 16: Snippets of PolyGlot’s PHP grammar, the

full grammar can be found at https://github.com/OMH4ck/

PolyGlot-Grammar/blob/main/php/PhpParser.g4

https://github.com/HexHive/Reflecta
https://github.com/HexHive/Reflecta
https://github.com/nautilus-fuzz/nautilus/blob/mit-main/grammars/php_custom.py
https://github.com/nautilus-fuzz/nautilus/blob/mit-main/grammars/php_custom.py
https://github.com/OMH4ck/PolyGlot-Grammar/blob/main/php/PhpParser.g4
https://github.com/OMH4ck/PolyGlot-Grammar/blob/main/php/PhpParser.g4

	Abstract
	1 Introduction
	2 Background
	3 Motivation and Requirements
	4 Reflecta Design
	4.1 Program Generation
	4.2 Type-aware Program Mutation
	4.3 Type-enhanced Corpus Feedback

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Semantic Correctness
	6.3 Code Coverage
	6.4 Discovered Bugs

	7 Limitation and Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Reflection Wrapper Implementation
	B Adapting Context-dependent Python Grammar
	C Extending Reflecta to more targets
	D Reproducing bugs found by PyRTFuzz
	E Reproducing PyRTFuzz's coverage
	F Extra Case Studies
	G Grammar Snippets

