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Abstract

Fuzzing is the de facto standard for automated testing. However,
while coverage-guided fuzzing excels at code discovery, its effec-
tiveness falters when applied to complex systems. One such class
entails persistent targets whose behavior depends on the state of the
system, where code coverage alone is insufficient for comprehen-
sive testing. It is difficult for a fuzzer to optimize for state discovery
when the feedback does not correlate with the objective.

We introduce Tango, an extensible framework for state-aware
fuzzing. Our design incorporates “state” as a first-class citizen in all
operations, enabling Tango to fuzz complex targets that otherwise
remain out-of-scope. We present state inference, a cross-validation
technique that distills portable coverage metrics to reveal hidden
path dependencies in the target. This in turn allows us to aggregate
feedback from different paths while maintaining state-specific oper-
ation. We leverage Tango to fuzz stateful targets covering network
servers, language parsers, and video games, demonstrating the flex-
ibility of our framework in exploring complex systems. Using state
inference, we shrink the scheduling queue of a fuzzer by around
seven times by identifying functionally equivalent paths. We extend
current state-of-the-art fuzzers, i.e., AFL++ and Nyx-Net, with state
feedback from Tango. During our evaluation, fuzzers using our
technique uncovered two new bugs in yajl and dcmtk.
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(a) W/ labeled cells, a fuzzer can

systematically explore themaze.





(b)W/o labels, a fuzzer can inden-

tify cells by their surroundings.

Figure 1: Exploring amaze is an example of a stateful process.

(RAID 2024), September 30-October 02, 2024, Padua, Italy. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3678890.3678908

1 Introduction

Fuzzing stateful systems requires special consideration. Coverage-
guided fuzzing excels at finding bugs as long as feedback on covered
code is strongly tied to explored functionality in the target. While
this intuition holds for simple programs, the effects of consuming an
input usually persist beyond the lifetime of that input in a stateful
program. An observed behavior of such a stateful system is only
reproducible in the context of a specific state.

We motivate stateful fuzzing with the example in Fig. 1a. If a
fuzzer had access to the last reached cell as feedback, it can leverage
that knowledge to prioritize paths that uncover new cells, as is the
case of coverage-guided fuzzers. A stateless fuzzer would mutate
a path—from the set of interesting paths it had already found—
and execute it in one shot. The mutated path may or may not
introduce moves along the way that would render the rest of the
path uninteresting (e.g., walking into a wall). In contrast, a stateful
fuzzer would select an interesting path as a prefix, follow it, then
generate a move in some direction. The key difference between
the two fuzzers is that the latter explores the maze incrementally,
whereas the former performs a random walk, implying that the
stateful fuzzer is more likely to solve the maze earlier.

Previous work reveals the benefit of state labels on fuzzer per-
formance. IJON [3] is an annotation framework that allows fuzzers
to incorporate complex state into their feedback loop. It was used
to fuzz Mario Bros. in a process not too different from exploring
a maze: knowledge of the last reached location guides the fuzzer
towards unexplored regions. Manually annotating a target requires

https://doi.org/10.1145/3678890.3678908
https://doi.org/10.1145/3678890.3678908
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effort and is often skipped in favor of readily available feedback like
code coverage. While alternative techniques attempt to extract state
variables from certain types of targets, varying success [5, 20, 25],
code coverage remains the preferred mode of instrumentation.

However, in the absence of labels, a fuzzer may be misguided.
Consider the example of an unlabeled maze in Fig. 1b. In a running
session, we assume the fuzzer can request one move at a time,
and its feedback is restricted to “whether or not the player moved”.
Without knowing the label of the current cell, the fuzzer attributes
the feedback only to the last generated move. For instance, if the
fuzzer arrives at cell 28 through an upward move from 27, it would
consider «upward» as an interesting direction and may select it
more often. Yet, whether or not a player can move depends not only
on the attempted move but also on its surroundings. In another
iteration, if the fuzzer starts from cell 5, moving upward would
yield no interesting results. Unaware of its surroundings, the fuzzer
quickly exhausts the set of interesting behaviors it can observe,
resulting in a random walk in exploration.

Nonetheless, we observe that such boolean feedback remains
useful to model the player’s local surroundings. Having found a
few initial paths, the fuzzer can extract characteristics of the cells
it has arrived at by trying out, at each path, all the different in-
teresting moves it has discovered so far. A complete exploration
would yield the classification represented in Fig. 1b: cells are anno-
tated by the possible set of paths that can be followed through one
move from each cell. All paths known to the fuzzer then fall into
one of 14 categories based on their surroundings. In essence, the
fuzzer measures the response pattern of each cell to a set of known
inputs. This allows it to group its known paths by their common
characteristics, e.g., paths that lead to a cell in a vertical corridor.
Increasing the number of steps yields a more accurate classification
such that, in the limit, each cell maps uniquely to its label. Through
this process, the fuzzer extrapolates multi-dimensional feedback
from a uni-dimensional metric to guide its exploration.

On the other hand, stateful fuzzers [15, 24, 26] introduce a key
feature for exploring complex systems: resumability. It entails the
ability to restore the target to a certain state and use that state as a
starting point for further fuzzing. They achieve that through restore
points, referred to as snapshots, which span different granularities,
from whole-system VM snapshots, through process restore points,
to record-and-replay techniques. Essentially, at each snapshot, the
target occupies an implicit state as a result of the path traversed
by the input. Perfect resumability ensures the reproducibility of be-
haviors in their respective states, and allows the fuzzer to maintain
its progress while exploring different paths.

In this paper, we propose state inference to address the challenges
arising from fuzzing stateful systems. State inference is a technique
to produce groupings of snapshots that occupy the same implicit
system state, based on similarities between input-response pairs.
The key idea is to cross-test snapshots against inputs and observe
their behavior to determine a mapping between snapshots and
states. It does not require any prior knowledge of specification or
global variables. This novel technique offers a more hands-off and
effective approach to stateful fuzzing, paving the way for improved
security testing of complex systems. In practice, seed queues are
often biased to a subset of the functional groups discovered by the
fuzzer. With the knowledge that different snapshots share the same

state, the fuzzer can better model the relations between snapshots
and distribute energies more equally among the inferred states. As
a result, the fuzzer can schedule from the state queue first, to ensure
an even exploration, and cycle faster through discovered behavior.

We implemented state inference on top of Tango, our versatile
framework for stateful fuzzing. Additionally, we extended current
state-of-the-art fuzzers, i.e., AFL++ and Nyx-Net, with state feed-
back from Tango. Our evaluation indicates that state inference
significantly improves seed scheduling by effectively mapping snap-
shots to states, achieving an average reduction of 86.02% to 87.76%
in the size of a fuzzer’s scheduling queue, when fuzzing network
servers and parsers. Much like solving a maze, fuzzing DOOM
(see Appendix E) also benefits from the knowledge of stateful in-
formation, e.g., the player and enemy’s positions, the remaining
amount of ammo, and health points. By incorporating stateful feed-
back, Tango solves the E1M1 level in DOOM within 30 minutes
and subsequently replays it in 3 minutes. We summarize our key
contributions as follows:
• Introduction of the state inference, which group snapshots that
belong to the same state based on their responses to inputs.

• Design ofTango, a modular-based framework for fuzzing stateful
systems in a state-aware manner.

• Implementation of state-aware scheduler extensions, for AFL++
and Nyx-Net, that leverage inferred states to reduce wait times
and disperse feedback, demonstrating Tango’s effectiveness in
analyzing complex systems.

• Open-source access to our framework and results to foster adop-
tion and provide value to the community. Tango is available at
https://github.com/HexHive/tango.

2 Challenges to Stateful Scheduling

The path explosion in fuzzing quickly degrades the performance
of a fuzzer. The performance becomes even worse when we are
fuzzing a stateful target due to the dependence on the system’s
state. The key to tackling path explosion in stateful fuzzing lies in
more efficient scheduling, which faces three core challenges.

Feedback Attribution: The fuzzer gradually develops a model
of the target through collected feedback, incorporating it into its
input generation for further exploration. Consider the example
of an FTP server in Fig. 2. If the fuzzer initially sends a correct
sequence of USER-PASS commands, it ends up in the AUTHED
state, where control and data transfer commands are accepted.
Now in the AUTHED state, the fuzzer sends a control command,

CLOSED WAIT_USER WAIT_PASS

AUTHED DATA_XFER

start accept() USER

PASS (correct)

PASS (incorrect)

<CTRL_CMD>

QUIT

<DATA_CMD>

done

Figure 2: A simplified FTP server state diagram.

https://github.com/HexHive/tango
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e.g. PWD, and receives positive feedback reinforcing the use of PWD
in future iterations. However, the PWD command is only valid in
an authenticated session context. Starting the session with any
command other than USER yields a completely different behavior.
Thus, without accounting for state, the fuzzer’s model of the target
receives conflicting or misleading feedback.

Exploration: The discovery of an interesting input can expose
many new paths to the fuzzer, since that input may set up the con-
text required to traverse those paths. Following the FTP example,
if the fuzzer saves the USER-USER-PASS-PWD sequence as an inter-
esting input, it may apply further mutations to it, leading to an
input like jUnK-PASS-PWD. Unaware of the state set up by the USER
command, the fuzzer mutates and destroys that part of the input,
trapping itself in an error path. To avoid this loss of progress, the
fuzzer should treat previous inputs as part of the state setup.

Seen differently, the history of interactions should be considered
as one way to restore the current state in the target, e.g. through
record-and-replay. Fuzzing is then performed incrementally along
one path of exploration. Note that, while generating invalid inputs
is equally important in fuzzing, this methodology does not rule
out the possibility of doing so. To test for an invalid command, it
suffices to start from an empty prefix path, or alternatively, only
mutate past a selected prefix. Both ensure that the state set up by
the prefix is not destroyed.

Soundness: If an input triggers a crash, it may not be sufficient
to generate a reproducer from that input alone, since the target may
have crashed due to previously accumulated state. To guarantee
the soundness (reproducibility) of crashes, the fuzzer must produce
an input to build up state, which requires the fuzzer to track the
millions of consumed inputs within the lifetime of the target.

These core challenges can be addressed by treating “state” as a
first-class citizen and anchoring the fuzzer’s operations around it.
Introducing this new dimension to fuzzing requires careful consid-
eration and handling in the form of snapshot management, state
modeling, and state-aware behavior.

2.1 Snapshot Management

For stateful fuzzing, it suffices that the target persists between
successive fuzzing iterations. This allows the target to build up
state through processing the consumed inputs. Nevertheless, to
tackle the aforementioned challenges with feedback attribution,
exploration, and soundness, stateful fuzzers typically snapshot their
progress incrementally. Through these snapshots, the fuzzer can
then save and restore a previously discovered path.

When fuzzing stateful targets, it is common to maintain a tree
of snapshots, where each node has successors representing other
snapshots. The tree is constructed by appending new snapshots as
children of the current node being fuzzed whenever new feedback,
e.g., control-flow edges, are discovered. Stateful fuzzers built on
this idea, such as Nyx-Net [27], AFLNet [24], NSFuzz [25], and SG-
Fuzz [5], manage their snapshot tree differently. Nyx-Net maintains
an implicit tree by backtracking input sequences and injecting snap-
shot commands along the path. Its snapshot tree is then encoded
in the input corpus itself. In contrast, fuzzers like SGFuzz, AFLNet,
and NSFuzz attempt to approximate the protocol state graph by
explicitly constructing a tree based on observed changes in state

𝐿0:
WAIT_USER

𝐿1:
WAIT_PASS

𝐿2:
WAIT_PASS

𝐿3:
AUTHED

𝐿′3:
AUTHED

USER USER PASS

PASS

PASS

Figure 3: A snapshot tree constructed for an FTP server.

labels. Nodes then represent unique values of the state variable or
response code, and within each node, the system maintains a set of
inputs that allow the fuzzer to restore the target to a snapshot of
that state. The approximate state graph is then obtained by merging
tree nodes sharing the same state labels.

2.2 State Modeling

State is a semantic identifier of the system’s dynamic nature. Any
event or interactionwith the systemmay update its state andmodify
its behavior. To measure state, three approaches exist. First, some
implementations observe global variables as explicit state identifiers.
However, this does not constitute a generic abstraction over states,
as there are often other contributing factors. Second, since the
state of a system boils down to variable memory contents which
influence its responses, such as the contents of the call stack, the
heap, or function-local variables, there are attempts at isolating and
capturing those variables as state feedback [5, 20, 25]. However,
their approaches either under-approximate or over-approximate
the state. Third, it is often easier for a developer who is familiar
with the target to specify their own definition of state that fits the
testing goals they are trying to achieve.

Recovering the behavioral model of a system is not straightfor-
ward. To recover states and the relations between them, AFLNet
requires patching the target to augment its responses such that
state identifiers are explicitly indicated through the response codes.
It also requires that the fuzzer is aware of how those identifiers can
be extracted from the received responses. Alternatively, SGFuzz
and NSFuzz instrument global variables as state indicators, but they
often require manual effort to filter out noise by adding irrelevant
variables to an elaborate ignore list. They also fundamentally as-
sume that state can be consolidated to global variables, when in
fact, it can span any mechanism for managing persistent memory
contents, such as the call stack, function-local variables, or heap
objects. On the other end of the spectrum, Nyx-Net foregoes state
identification and relies solely on its high reset rates to explore
more of the input space, following the blackbox fuzzing school of
thought that favors execution speed over introspection.

Precise state recovery is orthogonal to fuzzing since the imple-
mentation implicit states or diverge from the prescribed protocol.
Although such divergence is interesting for fault detection, it is only
discernible where the specification is available, or when a baseline
is used for comparison (as is the case of differential testing [18]).

The Over-shadowed Seed: Even though there are several ap-
proaches proposed to model states, existing fuzzers are still hard to
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find the over-shadowed seed. Consider again the example of the
FTP server in Fig. 3. When the fuzzer first sends the USER command,
it takes a snapshot 𝐿1 (in theWAIT_PASS state), since it observes
new feedback relating to the discovery of a new command. The
fuzzer then follows with USER again, taking a new snapshot 𝐿2 due
to executing the error handler in WAIT_PASS, and it remains in
that state. Sending the PASS command then results in 𝐿3 (in the
AUTHED state). The fuzzer has now discovered a path to the AU-
THED state as USER-USER-PASS. Notably, the fuzzer discovered the
WAIT_PASS state “twice”, but the AUTHED state only once. De-
pending on the type of feedback collected by the fuzzer, however,
it may also be incapable of discovering the USER-PASS sequence
from 𝐿1, since the feedback for discovering the PASS command had
already been attributed to 𝐿3, and it is no longer considered an in-
teresting signal for taking a snapshot. In effect, the discovery of the
USER-PASS sequence was over-shadowed by USER-USER-PASS due
to overlapping feedback. This phenomenon stacks up the snapshots
and dilutes the scheduling pool.

Observation: Yet, despite 𝐿1 and 𝐿2 traversing different paths in
the target, we know they represent the same state: the target expects
a PASS in either case to transition to the next state. If we assume
𝐿3 was never created, and we send PASS at 𝐿1, we would discover
AUTHED again and would create a snapshot 𝐿′3. Conveniently,
through this approach, the fuzzer discovers a shortcut to AUTHED
requiring the minimal number of commands to reach it.

This observation is not limited to authentication routines but
generalizes to any stateful system whose behavior is primarily
influenced by its inputs. By probing the system at a state with
different inputs and measuring its responses, we can develop a
model of the state it is in. If two snapshots share the same responses
across all tested inputs, we can then consider them as belonging to
the same state, as far as the fuzzer is concerned.

2.3 State-aware Operation

The behavior of a stateful target changes depending on the state of
the system, implying that inputs consumed by the target must be
generated by accounting for the current state. Beyond using snap-
shots as a prefix for incremental exploration, none of the mentioned
state-of-the-art fuzzers incorporates state into its operations, such
as mutator schedules or state-specific dictionaries. Incorporating
feedback in a state-specific manner helps develop a more accurate
model of the target in each state, better guiding the fuzzer for ex-
ploring further within each state. Granted, feedback can become
overwhelming for the fuzzer [9, 11, 30]. State-dependent feedback
can be even more challenging to handle, as the target’s behavior
evolves dynamically, necessitating that feedback be incorporated
dynamically as well. Nonetheless, to make the most of the collected
feedback, a state-aware fuzzer should treat state as a distinct di-
mension for its operations across all phases of the fuzzing process.

3 State Inference

State inference models the behavior of the target through its re-
sponses to a set of inputs. Specifically, we leverage the snapshot
grouping to model the target’s states. At each snapshot, the tar-
get occupies a unique hidden state that drives its behavior and
influences its response to inputs. For a stateful system, we posit

that two snapshots of the system occupy the same state—as far as
the fuzzer is concerned—if both snapshots share the same response
pattern across all tested inputs, given a sufficient number of samples.
We use this insight to develop a systematic approach for evaluating
snapshots, grouping them by their observable response patterns.
This grouping thus yields a hierarchy of states and snapshots that
enables fairer and more targeted seed scheduling.

Definition 1: Feature and Feature Map

A feature is a measurable quantity that is influenced by
state, e.g., edge hit count. A feature map is a mapping from
a feature identifier, e.g., edge label, to its measured value.

Definition 2: Response and Response Pattern

A response is a value instance of the feature map obtained
by executing the target with a given input. For example,
with the edge coverage map as the feature map, if three
new edges are covered due to the given input, three is
the response. Importantly, in our implementation, we also
consider the edge’s hit count as part of the response. A
response pattern is a set of features triggeredwhile executing
an input at a snapshot. For example, the three edges newly
triggered with the given input form a response pattern.

State inference has three steps. First, this grouping requires ad-
ditional executions to probe the target along all the interesting
paths discovered by the fuzzer. These executions are named cross-
pollination (Section 3.1). Fortunately, however, the benefits can
outweigh the overhead costs due to the nonlinearity of exercising
new coverage: while fuzzing iterations grow in linear time, new fea-
tures are only discovered in exponential time [6]. This means that,
as the fuzzing campaign progresses, the cost of state inference is
amortized over the time spent by the fuzzer between successive cov-
erage findings. Meanwhile, the fuzzer can leverage the learned state
model and the relations between snapshots for better input and
mutator scheduling. Second, the grouping after cross-pollination is
based on the capability matrix that stores the information obtained
by cross-pollination. We come up with three operators, i.e., sub-
sumption, elimination, and colorful collapse, to group snapshots
into states (Section 3.2). Third, having obtained the static capabil-
ity matrix, we have to update it during fuzzing so that the fuzzer
continuously benefits from the refined feedback (Section 3.3).

3.1 Cross-Pollination

Cross-pollination seeks hidden capabilities by re-applying the same
input at different snapshots and observing overlaps in feedback.

Fuzzers usually discover and record inputs that trigger new fea-
tures within the target. Working under this assumption, every
recorded input is guaranteed to elicit a response in at least one
snapshot that was active at the time the input was first discovered.
Using the battle-tested mechanism of a cumulative global feature
map, where observed features are only considered interesting the
first time they are encountered, the fuzzer is incapable of rediscov-
ering the same feature across different contexts. In other words, if
the same response can be observed from different snapshots, the
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𝑆0 𝑆1 𝑆2 𝑆30
1

1

0 1

0

1

0

(a) A state diagram of a system that detects the string 𝑏’1011.

𝐿0: 𝑆0 𝐿1: 𝑆0 𝐿2: 𝑆1 𝐿3: 𝑆1

𝐿4: 𝑆2 𝐿5: 𝑆0𝐿6: 𝑆3

𝐿7: 𝑆2

𝐿8: 𝑆1

0/2 1/3 1/3

0/4

0/21/5
0/4

1/3

(b) One example of a snapshot tree constructed by the fuzzer. Each

node is annotated with the implicit state 𝐿 that the system occupies

at that snapshot and its ground-truth state 𝑆 . Each edge is annotated

with the given input and the response pattern.

𝐿0: 𝑆0 𝐿1: 𝑆0

𝐿2: 𝑆1

𝐿2: 𝑆1

𝐿1: 𝑆0

𝐿3: 𝑆1

𝐿4: 𝑆2 𝐿3: 𝑆1𝐿4: 𝑆2

0/2

1/3

1/3

0/2

1/3

0/4
1/3

0/4

(c) An example of the snapshot tree after the cross-pollination. New

capabilities are found, such as 𝐿0 ∈ 𝑁 − (𝐿2 ) , 𝐿1 ∈ 𝑁 − (𝐿1 ) , 𝐿2 ∈
𝑁 − (𝐿4 ) , 𝐿3 ∈ 𝑁 − (𝐿3 ) , and 𝐿3 ∈ 𝑁 − (𝐿4 ) .

Figure 4: A running example of cross-pollination.

fuzzer will attribute only one of those snapshots with the discovery
of that response.

We illustrate this procedure with an example: consider the sys-
tem with the state graph prescribed in Fig. 4a. After some simulated
rounds of fuzzing, we arrive at the snapshot tree depicted in Fig. 4b.
Whereas the fuzzer observed unique features—namely, state tran-
sitions in the system’s finite state machine (FSM) — that resulted
in this snapshot tree, we note that multiple snapshots occupy the
same state. Unaware of this overlap, the fuzzer would schedule each
of these snapshots individually and would integrate feedback into
state-agnostic models. This results in duplicate efforts, as the fuzzer
wastes many cycles on testing the same states along different paths.

However, given this initial snapshot tree, the fuzzer can leverage
cross-pollination to discover hidden relations between snapshots,
allowing it to better model their overlap and optimize its explo-
ration. Specifically, given enough initial input samples, the behavior
of a snapshot can be modeled by measuring its different response
patterns. To discover the capabilities of all snapshots, we iterate
over all inputs in the snapshot tree and apply them at every snap-
shot, measuring its response pattern, and recording its ability to

reproduce the original response. In constructing the snapshot tree,
every response pattern is associated with an edge between a parent
and a child snapshot. As such, if a snapshot is capable of a response,
it is equivalent to having an edge between that snapshot and the
corresponding child node in the snapshot tree. Fig. 4c shows the
part of the snapshot tree after cross-pollination applying 0 or 1 to
all existing snapshots.

Definition 3: Capability

A snapshot 𝐿𝑖 is said to have a capability for 𝐿𝑗 when the
response to an input measured in 𝐿𝑖 matches the response
of another snapshot in the in-neighborhood of 𝐿𝑗 , denoted
as 𝐿𝑖 ∈ 𝑁 − (𝐿𝑗 ). For example, with a snapshot tree in Fig. 4c,
𝐿0 ∈ 𝑁 − (𝐿2) holds when re-applying the same input 1 to
𝐿0 generates the same response 3 as of the input 1 to 𝐿2’s
in-neighborhood 𝐿1.
For a directed graph G=(V, E), a vertex u is an in-neighbor of a vertex v if (u,
v) ∈ E and an out-neighbor if (v, u) ∈ E.

3.2 Snapshot Grouping

To continue grouping snapshots, we record all the capabilities in a
capability matrix.

Definition 4: Capability Matrix

A capability matrix is a matrix of snapshots’ capabilities
based on the responses to inputs and non-empty cell ⟨𝐿𝑖 , 𝐿𝑗 ⟩
stores the input that triggers a known response if 𝐿𝑖 ∈
𝑁 − (𝐿𝑗 ) holds. The left part of Fig. 5 shows a capability
metric with multiple capabilities that have been inferred.

3.2.1 Subsumption. The populated capability matrix provides in-
sight into which snapshots overlap in behavior, and consequently,
how distinct snapshots are. This knowledge is essential for better
guiding the scheduler toward exploring unique functionality with-
out duplicating efforts and stalling progress. To find that overlap, we
develop the subsumption operator over graph vertices (≺). In short,
a node𝑢 is subsumed by 𝑣 iff 𝑣 can replace𝑢 without affecting reach-
ability, i.e., 𝑣 has at least all the same edges as 𝑢. Taking Fig. 5 as
an example, we observe that {𝐿0, 𝐿1, 𝐿5}, {𝐿2, 𝐿3, 𝐿8}, {𝐿4, 𝐿7}, and
{𝐿6} form sets of snapshots with mutually overlapping responses.
Each set of snapshots is then called an equivalence state. Notably,
equivalent snapshots may traverse different paths through the sys-
tem and thus cannot be pruned solely through power schedules [7],
since state information is not captured by code coverage alone. But,
any snapshot belonging to the same equivalent state overlaps, and
thus can be safely eliminated, without loss of capabilities. Alter-
natively, to avoid inadvertently losing quality inputs, we choose
to include strictly subsumed snapshots in the equivalence states
of the subsuming nodes. This ensures that the fuzzer experiences
the same reduction in state counts while maintaining access to
all interesting snapshots. We present the formal definitions and
discussions of subsumption operators in Appendix A.

3.2.2 Elimination. In practice, a fuzzer may also encounter snap-
shots whose response sets are proper subsets of others’ response
sets. From the fuzzer’s perspective, such snapshots are less capable
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and thus not worth dedicating a scheduling slot for, despite having
non-conforming behavior. Any response elicited in that snapshot
can be reproduced in another having at least one additional capa-
bility. By identifying such states and eliminating them, the fuzzer
further reduces the size of the scheduling queue and improves the
dissemination of feedback.

3.2.3 Colorful Collapse. After subsumption and elimination, we
obtain a reduced set 𝑆 of equivalence states 𝑆0 = {𝐿0, 𝐿1, 𝐿5}, 𝑆1 =

{𝐿2, 𝐿3, 𝐿8}, 𝑆2 = {𝐿4, 𝐿7}, and 𝑆3 = {𝐿6}. Within each state lies
a collection of snapshots that share the same behavior across all
tested inputs. We model such behavior by the capability set of the
state ⟨input : 𝐼 , response : 𝑅⟩. For example, if ⟨𝐼𝑖, 𝑗 , 𝑅𝑖, 𝑗 ⟩ leads 𝐿𝑖 to
𝐿𝑗 , where 𝐿𝑗 is in 𝑆1, all the snapshots 𝑆1 will share the capability set
⟨𝐼𝑖, 𝑗 , 𝑅𝑖, 𝑗 ⟩. Furthermore, in applying the input 𝐼𝑖, 𝑗 at any snapshot
in 𝑆𝑖 , if we can reproduce the response pattern 𝑅𝑖, 𝑗 , we can then
say that all snapshots in 𝑆𝑖 can reach 𝐿𝑗 through 𝐼𝑖, 𝑗 , because they
all elicit the same characteristic response of 𝐿𝑗 . For example, all
snapshots 𝑆0 can reach 𝐿2 in 𝑆1 implied by its capability set ⟨1, 3⟩.

This is directly observed when the capability matrix𝐴𝐶 is cast to
an adjacency matrix of snapshots, as depicted in Fig. 5. To simplify
the aggregation of snapshots, such that scheduling and feedback
are performed at the state level, we can collapse the adjacency
matrix through vertex contraction [23] over 𝑆𝑖 , according to if any
snapshot in 𝑆𝑖 can reach any snapshot in 𝑆 𝑗 .

Since the capability matrix specifies the response of every snap-
shot to a single input, we consider those as first-order responses;
recall that in the maze analogy, we also limited the inference to
one step away from each cell. The behavior of the snapshot af-
ter applying the first input can only be modeled by further cross-
testing, along an additional dimension, to obtain capability tensors
of higher-order responses. However, going beyond the first order
significantly increases the overhead of state inference and may only
partition the snapshot groupings even further; its added value is
higher accuracy. As a matter of fact, we find that fuzzing seems to be
tolerant to the imprecision introduced by the first-order responses
due to the dampening effect of random sampling.

The collapsed matrix models the first-order relations between
states. In our contrived example, this matrix recovers the original
state graph presented in Fig. 4a. While certainly desirable, this was
mainly driven by two factors:

Lossless features:Transitions in the snapshot tree coincidewith
those in the state graph; there are exactly 8 of each. This implies that
the feature feedback to the fuzzer was capable of capturing these
state transitions, without a loss in accuracy or precision. While it is
not a coincidence that our tailored example displayed this behavior,
it is unlikely that features are lossless in practice. The nature of
the feedback (e.g., code or data coverage) dictates the accuracy and
precision of the response patterns. In the FSM example, the fuzzer
also managed to explore all transitions through different generated
inputs. However, completeness is not guaranteed under fuzzing.

Smooth transitions: In constructing the snapshot tree, the
fuzzer encountered only new features at any active snapshot, corre-
sponding to triggering unseen transitions in the state graph. Had
the fuzzer triggered multiple transitions in the target without ob-
serving new features, then the edge to the next recorded snapshot
is not guaranteed to overlap a transition in the state graph. In effect,
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Figure 5: The capability matrix𝐴𝐶 (left), where a at ⟨𝐿𝑖 , 𝐿𝑗 ⟩ in-
dicates that 𝐿𝑖 ∈ 𝑁 − (𝐿𝑗 ). It is obtained after cross-pollination
by uncovering new capabilities—marked in blue. With sub-
sumption, we group up nodes that mutually overlap in capa-

bilities (in rectangles) in 𝐴𝐶 . Finally, we collapse the matrix

onto a graph of equivalence states that model the relations

between snapshots (right).

the fuzzer would have discovered a path through the state graph,
rather than a single transition; yet, it would record it as one edge in
the snapshot tree. It is similarly difficult to achieve “smoothness” in
practice. In the maze analogy, we enforced smoothness by limiting
the fuzzer to one move at a time.

To mitigate the imprecision and inaccuracy of feedback, and
to avoid misguiding the fuzzer with false assumptions about state
equivalence, we maintain the original snapshot tree and color it
with state labels. This ensures that implicit state build-up in equiv-
alent snapshots is not lost during collapse, and that consequent
application of the state inference process does not compound the
errors, but rather reduces them as more response patterns are mea-
sured and evaluated. This also allows us to iteratively collapse the
same matrix to obtain a minimal recovered model of state relations.

3.3 Successive Rounds of Inference

After applying state inference, we obtain a capability matrix that
carries the fruits of cross-pollination, along with a collapsed matrix
that models the relations between labeled snapshots. This labeling,
however, is static and applies only to the cross-tested snapshots. As
the fuzzer progresses, it will discover more snapshots that remain
unclassified and do not benefit from the results of state inference. It
is then necessary that the process is continuously applied through-
out the fuzzing campaign.

One straightforward approach is through batching: for every
batch of𝑚 new snapshots, we re-apply the state inference, extend-
ing and updating the capability matrix from the previous round. We
illustrate the state of the extended capability matrix of the second
application round in Fig. 6. Note that entries in quadrant 𝑄𝐴 need
not be revisited, which is to say, we do not recompute existing
snapshot groups, since capabilities are assumed to be reproducible.
After overlaying discovered edges from the latest snapshot tree
onto the new capability matrix, we can continue to apply the state
inference as prescribed. Alternatively, batching can be scheduled in
time slots, e.g. every 𝑁 minutes, accommodating for the non-linear
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quadrants are overlaid with edges—marked in green—from

the latest adjacency matrix. Cross-pollinated capabilities are

marked in blue. 𝑄𝐶 is always initially empty since old snap-

shots cannot have new predecessors.

increase in coverage by performing inference on the new snapshots
generated since the last run. An adaptive hybrid approach can com-
bine the two strategies to reduce the startup cost of inference and
maximize information gained throughout a fuzzing campaign.

While we present our approach as an independent post-discovery
step, state inference can also benefit from the fuzzer itself since the
fuzzer spends much time on generating inputs that do not trigger
new features. Nonetheless, the feedback is often non-empty: these
uninteresting inputs likely elicit known response patterns that may
overlap those of other snapshots. This observation allows the fuzzer
to dynamically extend the capability matrix at a minimal cost: the
computational overhead of matching.

4 Overhead, Optimizations, and Trade-offs

To uncover hidden capabilities, state inference relies on cross-
validation, a technique that is notorious for its quadratic complexity.
Applying state inference in batches of𝑚 new snapshots requires
that the fuzzer discovers𝑚 new response patterns. But coverage
growth is linear in exponential time [6]: to discover𝑚 new response
patterns, the fuzzer spends on the order of exp(𝑚) more time than
for the last batch. As the fuzzer continues to progress, the overhead
cost of state inference is amortized over the executions performed
between rounds (See Appendix B for a more formal analysis). In
the meantime, it reaps the benefits of modeling state relations in
scheduling and in generation. We assess these costs and benefits
through our evaluation in Section 6.2 and Section 6.3.

The ramp-up cost of state inference is, however, high. A fuzzer
finds the most coverage in the first few epochs of the campaign, ne-
cessitating frequent rounds of cross-testing. Whereas the overhead
tapers off at the tail, the initial costs can overwhelm the fuzzer, mak-
ing it spend most of its time in the beginning just on inference, and
bringing its progress to a slow halt. The cost of ramping up greatly
varies with initial seed coverage, the complexity of the target, and
the execution speed, among other variables.

To address the ramp-up cost, we propose several optimizations
that reduce the overhead of state inference, at the cost of some accu-
racy in grouping snapshots. The prescribed cross-testing procedure
requires that all cells of Fig. 6 outside of𝑄𝐴 be tested for adjacency.
We propose three optimizations (one for each quadrant) to in the
form of skipped tests, thereby reducing the number of resets and
executions required for each round of inference.

4.1 State Broadcast (𝑂𝐵)

Suppose the inferred states in𝑄𝐴 are correct once constructed, then
cross-testing the capabilities of individual snapshots within the
same state becomes unnecessary. Working under that assumption,
equivalent snapshots always have the same capabilities, which we
can evaluate as a property of the state they belong to. For a state
with 𝑁 snapshots, it thus suffices to perform at most𝑚 cross-tests,
instead of𝑚 × 𝑁 . Discovered capabilities in 𝑄𝐵 are then broadcast
to all snapshots within a state, reducing the number of cross-tests
(See Appendix C for a formal analysis of its reduction). In applying
state broadcast as an optimization, the overhead of inference is
distributed among states, rather than snapshots. This results in
higher prediction accuracy for “uncommon states”, i.e., those with
fewer snapshots, which are arguably of more interest to the fuzzer.

4.2 Response Fingerprinting (𝑂𝐶 )

After one round of state inference, we obtain a capability matrix
in 𝑄𝐴 . Each state and its associated capability set serve as labeled
data for training a decision tree (DT) classifier. Such a classifier can
optimally divide the input space, enabling us to primarily cross-test
inputs in 𝑄𝐶 which maximize information gain.

We fit a DT over this training data to infer response fingerprints:
minimal subsets of capability sets which are characteristic identi-
fiers of states. The DT classifier yields a binary tree, where each
internal node tests for a capability, such that nodes closer to the
root yield higher information gain. Leaf nodes consequently carry
a value indicating the most likely candidate state.

Following this procedure, for each new snapshot in the inference
batch (𝑄𝐶 ), we traverse the DT from the root and query it for the
next capability to test, until we hit a leaf node. At this point, the
candidate state is identified. The tested capabilities along the path
form a subset of the capability set of the candidate. Nonetheless,
to reduce false positives and satisfy the rules of subsumption, we
extend the testing to all non-empty responses in the candidate’s
capability set.

Consider the second round in Fig. 6. We fit a DT over the capa-
bility sets of 𝑆0 : ⟨𝐿1, 𝐿2⟩ and 𝑆1 : ⟨𝐿3⟩. In this simplistic example, a
test on any of {𝐿1, 𝐿2, 𝐿3} is enough to yield a classification. With
the given labels, it is thus sufficient to perform one test, instead of
four, to classify a new snapshot. A snapshot that passes the test has
a capability set that matches that of 𝑆1, making it at least equivalent.
However, failing the test implies an empty capability set, yet the
classifier would predict 𝑆0. To properly test for equivalence, we
must test against 𝑆0’s entire capability set in the least (for a total
of three tests). This allows us to properly classify 𝐿5 in Fig. 6. Note
that, if the capability set of a new snapshot 𝐿𝑢 matches that of
the candidate state 𝑆𝑣 using DT classifiers, we can only infer that
𝑆𝑣 ⪯+ 𝐿𝑢 , since we do not have information about what we did not
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Figure 7: The general workflow of the Tango framework.

test. Whether or not 𝑆𝑣 ≺ 𝐿𝑢 , the result is then the same: a state
𝑆𝑤 = 𝑆𝑣 ∪ {𝐿𝑢 }. Combined with coloring, this approach ensures
that state inference remains consistent under sparsity.

4.3 Test Extrapolation (𝑂𝐷 )

With response fingerprinting, we can reduce the number of tests
to be done in the 𝑄𝐶 quadrant of Fig. 6. However, 𝑄𝐷 remains to
be fully tested. Building on top of the DT’s predictions, we can
leverage 𝑄𝐵 to extrapolate which tests in 𝑄𝐷 need to be applied.
Instead of cross-testing all𝑚 new snapshots against each other, we
can reduce the cost of inference by extrapolating tests from the
new state capabilities.

After finding a candidate state to which each snapshot belongs,
we populate𝑄𝐵 to explore the new capabilities of pre-labeled snap-
shots (i.e., those in 𝑄𝐴). We follow that by testing new snapshots
only against the new capabilities of their candidate states. As with
response fingerprinting, this process ensures correct subsumption
conditions, minimizing the risk of mislabeling snapshots.

5 Tango: The Framework

State inference extends the fuzzer’s knowledge base with informa-
tion about the behavior of the target, which could be leveraged to
improve its exploration through (a) higher scheduling efficiency
over states; (b) training of state-specific models for inputs and mu-
tators; and (c) better approximation of state relations. Nonetheless,
the technique introduces new definitions and requires components
which are not explicit in existing fuzzers or frameworks, such as
snapshots, states, and transitions. To assess and evaluate the feasi-
bility and benefits of state inference, a whole re-write and restruc-
turing of the typical fuzzing workflow is needed. The lack of an
existing framework for state-aware fuzzing and the inflexibility of
existing monolithic fuzzers motivated the design and development
of Tango: a state-aware fuzzing framework.

5.1 Workflow

Anchored around the notion of state-sensitivity, Tango general-
izes over the traditional fuzzer architecture and offers a flexible
environment for developing tailor-made fuzzers of stateful systems.
The workflow is presented in Fig. 7. In the context of a fuzzing
Session, we 1 iteratively step through a Strategy that governs
the exploration and exploitation efforts of the fuzzer. Provided with

knowledge of the current state of the system, 2 the Strategy
chooses a target state to fuzz and invokes the Generator to con-
struct a candidate input, suitable for application under that state.
The former then 3 forwards the input to the Explorer, which
4 ensures that the system occupies the target state, then 5 exe-
cutes the input through its Driver. With the help of the Tracker,
6 peeking into the new state of the system enables the Explorer
to record any observed changes. The latter then 7 forwards its
findings over a callback to the Session, which 8 broadcasts any
updates to concerned components, thus closing the feedback loop.

5.2 Implementation

Tango is implemented in Python 3.11 for Python’s flexibility and
ease-of-use. We expand on the implementation details in Appen-
dix D. Importantly, during our implementation, we have identified
three kinds of non-determinism: random numbers, time, and shared
resources, and concretely addressed these issues by providing the
random generator with a constant seed, providing the target with
normalized time [1], and recovering shared resources when the
target is reset. Removing nondeterminism that unnecessarily dif-
ferentiates two snapshots that should be merged will improve the
overall accuracy of the snapshot grouping.

6 Evaluation

State inference is a mechanism to identify functionally-distinct
states through cross-testing its snapshots against different inputs.
To assess the effectiveness of this technique and pinpoint its poten-
tial use cases, we address the following research questions through
distinct evaluation campaigns:
RQ1 What is the cost of cross-testing?
RQ2 How well do fuzzers distribute cycles to functionally-distinct

snapshots?
RQ3 What is the potential reduction in queue sizes?
RQ4 How does code coverage correlate to state coverage in evalu-

ating state-aware fuzzers?

6.1 Experimental Setup

To quantify the cost and benefits of a new technique, it must be
compared against a baseline where only key features are different.
These features must then be tested individually. Since we imple-
mented state inference on top of Tango, we perform the parametric
analysis with Tango itself as the baseline, by toggling new features
and sweeping over parameters. This enables us to measure the
induced effect of each new aspect by changing one variable at a
time, discounting the possible variances from runtime effects, im-
plementation artifacts, or a richer set of mutators and schedulers,
such as those in AFL++ [10].

To that end, we tackle RQ1 through a set of experiments on
Tango-Infer, configured to use state inference as a strategy. More-
over, to assess the potential inefficiencies of scheduling functionally-
equivalent snapshots (RQ2), we dispatch a set of campaigns to
state-of-the-art state-aware fuzzers, collect their seed queues, and
replay them through Tango-Infer to find functional groupings
among the fuzzers’ snapshots and analyze the skew of snapshots in
explored states. Additionally, for RQ3, we use the results of state
inference on fuzzer queues to approximate the expected reduction
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Figure 8: The median overhead of state inference as the pro-

portion of time spent on cross-testing, when optimizations

are disabled (solid lines) and enabled (dotted lines), over 24

hours, under different batch sizes. Suppose that the speed to

discover new snapshots is the same, the lower𝑚 is, the more

frequently the state inference is performed.

ratio 𝛼 encountered across different targets. Finally, to assess the
practical advantage of state inference, we set up augmented fuzzing
campaigns on top of state-of-the-art baselines, where state infer-
ence is run periodically to condense the seed queue. To answer
RQ4, we report the achieved coverage with and without inference,
and we measure the benefit of state inference as the proportion of
equivalence states discovered uniquely by each fuzzer.

We perform evaluations against all the thirteen version-anchored
targets fromProFuzzBench [21] and three stateful parsers: libexpat,
yajl, and llhttp. While parsers are traditionally considered state-
less, our evaluation highlights their stateful nature, as well as
Tango’s flexibility in fuzzing diverse data channels. We run 24-
hour campaigns, each with 3 trials to account for randomness. We
conduct all experiments on four servers, each with 32 Intel Xeon
Gold 5218 CPU (2.30GHz) cores, 64GB RAM, and Ubuntu 22.04.

6.2 RQ1: Empirical Overhead

During inference, the target is reset, and inputs are executed for
cross-testing every cell in the capability matrix. To assess the over-
head of this operation, we measure the time spent by the fuzzer
and the number of tests performed, across varying settings of batch
size𝑚 and enabled optimizations 𝑂𝐵 , 𝑂𝐶 , and 𝑂𝐷 .

Fig. 8 shows the overhead of state inference as a function of time.
The beginning of a fuzzing campaign records many snapshots and
frequently invokes state inference, due to the initial seeds quickly
expanding coverage. As exploration speed tapers off, the fuzzer con-
tinues to generate and execute inputs, progressively spending less
of its time on cross-testing. However, it leverages the knowledge
gained from previous applications of state inference to schedule its
exploration more evenly across the functionally distinct snapshot
groups. As discussed in Section 3.3, it is essential to continuously
apply inference on new snapshots. Otherwise, the fuzzer regresses
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Figure 9: The hit accuracy (the percentage of correctly la-

beled snapshots) of optimizations as a function of introduced

savings (the skipped tests) based the ground truth collected

when doing state inference without optimization.

in the direction of high-density regions [7]. Fig. 8 highlights opti-
mizations can reduce the ramp-up cost and thus allow the fuzzer
to resume regular operation faster.

To better understand the influence of the optimizations, Fig. 9
breaks down the trade-off between the introduced savings (skipped
tests) and the sacrificed accuracy (the percentage of correctly la-
beled snapshots). First, we lack data for some targets since the
number of the snapshots generated during fuzzing these targets is
insufficient to perform cross-testing and the validation of savings
and accuracy. Second, as shown in Fig. 9a, the optimizations can
decrease more than half of the tests while maintaining moderate
accuracy. Third, for a batch size of 50, Fig. 9b shows that various
optimizations impact savings and accuracy differently.

Optimizations rely heavily on the results of previous rounds
of state inference. If a grouping is incorrectly established, it could
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tributions, illustrated through notched box-plots at 95% CI.
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for its target across all campaigns.

remain divergent for the lifetime of the fuzzing campaign, especially
since, in our implementation, matching is not error-tolerant. If the
fuzzer falsely generates distinct groupings, then future rounds of
inference, and optimizations within them, could propagate the
errors (unless groups are merged again under subsumption).

6.3 RQ2: Snapshots in Biased Queues

Whenever an evolutionary fuzzer encounters interesting cover-
age, it saves the input that caused it in its seed queue. For stateful
fuzzers, these seeds serve as snapshots to restore the target to
the reached state. To quantify the benefits that seed scheduling
through state inference could provide, we measure the distribution
of fuzzer-generated snapshots across functionally-distinct equiva-
lence states. If we assume that a state-unaware fuzzer selects seeds
from the queue with a uniform distribution (i.e., it assumes that
seeds are evenly spread across target functionality), then we can
assess the “surprise” [28] of sampling uniformly from a skewed
population. We calculate �̂�𝐾𝐿 (S| |U), the Kullback-Leibler diver-
gence [14], of the observed Snapshot-in-state distribution against
a Uniform reference, normalized by 𝑙𝑜𝑔(𝑁 ), where 𝑁 is the total
number of snapshots observed in each campaign.

In this experiment, we run AFL++, Nyx-Net, and Tango-Infer
against compatible targets, collect their seed queues, and apply
state inference to extract snapshot groupings. We present the re-
sults in Fig. 10. A value �̂�𝐾𝐿 = 0 indicates that sampling the seed
queue uniformly yields results consistent with sampling a uniformly
distributed population, i.e., where there are equally as many snap-
shots for every equivalence state discovered by the fuzzer. On the
other end of the spectrum, �̂�𝐾𝐿 = 1 implies that uniform sampling
yields the highest surprise: whereas the fuzzer would expect to be
exploring different functionalities by cycling through its queue, it is
likely tunnel-visioned by a majority equivalence state. A fuzzer that
samples its seed queue uniformly would be hindered by duplicate
efforts and a self-reinforcing equivalence state.

On the other hand, while fuzzers generally employmore complex
seed scheduling mechanisms [7, 16, 29], those cannot replace state
awareness. A schedule that prioritizes snapshots unequally based
on observed feedback inherently disregards the possible overlap of

bftpd
dcmtk

dnsmasq
exim

expat
kamailio
lightftp
live555

llhttp
openssh
openssl
proftpd

pureftpd
tinydtls

yajl

16.0 (84.39%)
5.0 (84.04%)
2.0 (99.60%)

34.0 (77.58%)
232.0 (70.31%)
10.0 (96.98%)
3.0 (96.37%)
4.0 (72.00%)
1.0 (98.81%)

11.0 (85.28%)
4.0 (90.23%)

43.0 (86.80%)
5.0 (94.77%)
1.0 (97.20%)

102.0 (55.92%)

Batch size: 10
11.0 (87.15%)
6.0 (80.36%)
4.0 (99.22%)

49.0 (65.73%)
219.0 (70.15%)

4.0 (98.56%)
7.0 (93.39%)
3.0 (89.66%)
1.0 (98.80%)

16.0 (81.95%)
3.0 (94.39%)

73.0 (77.78%)
4.0 (95.82%)
1.0 (98.37%)

109.0 (59.23%)

Batch size: 20

0 500 1000 1500

bftpd
dcmtk

dnsmasq
exim

expat
kamailio
lightftp
live555

llhttp
openssh
openssl
proftpd

pureftpd
tinydtls

yajl

16.0 (86.17%)
4.0 (99.15%)

32.0 (76.34%)
197.0 (71.86%)

6.0 (97.59%)
10.0 (93.13%)
26.0 (56.50%)
1.0 (98.82%)

13.0 (89.04%)
63.0 (81.54%)
2.0 (97.64%)
1.0 (98.68%)

100.0 (59.62%)

Batch size: 50

0 500 1000 1500

2.0 (99.58%)
47.0 (80.95%)

219.0 (73.74%)
3.0 (98.52%)
8.0 (95.80%)

23.0 (82.52%)
24.0 (93.07%)
3.0 (97.73%)
1.0 (99.11%)

136.0 (56.56%)

Batch size: 100

Figure 11: The number of the discovered snapshots (in blue)

and the number of the inferred states (in orange). Text after

each bar shows the number of the inferred states and the

reduction ratio 𝛼 = 1 − states/snapshots at the end of 24-hour

fuzzing campaign without optimizations.

those snapshots with others in their equivalence state. Equivalent
snapshots exercise overlapping behavior, insofar as cross-testing
has not identified discrepancies that necessitate subdividing the
group into distinct functionalities. However, since fuzzing is incom-
plete, it may be that now-equivalent snapshots may diverge in the
future, given that they are sufficiently scheduled. A non-uniform
scheduling strategy may starve those snapshots of the time needed
to explore their potential capabilities, often in favor of the first one
which uncovered interesting features.

6.4 RQ3: Reduction Ratio 𝛼

The main advantage of state inference is condensing the seed queue
into functionally distinct islands. This allows seed scheduling to
be more balanced and reduces redundant exploration of the same
code regions. To assess the effect of state inference on queue size
reduction, we measure the number of snapshots generated by every
campaign, and the corresponding number of discovered groupings.
In Fig. 11, we report the reduction ratio 𝛼 as 𝛼 = 1 − states/snapshots.

The average reduction ratio is 86.02% (𝑚 = 10), 86.04% (𝑚 = 20),
85.08% (𝑚 = 50), and 87.76% (𝑚 = 100), i.e., the queue is around
seven times smaller. Combined with the results from Section 6.2,
this suggests that, during later fuzzing stages, the fuzzer can cycle
through its queue around seven times as fast, at a diminishing cost.
The skewed distribution of seeds in fuzzing queues, suggests that
state-of-the-art fuzzers could benefit from applying state inference
to prune their queues and avoid tunnel vision towards high-density
regions. Continuous incremental application also ensures that new
snapshots are incorporated and that the fuzzer avoids regression
towards non-uniformity.
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Figure 12: Edge coverage collected from Nyx-Net (for network servers) and AFL++ (for parsers) when running without (solid

lines) and with (dotted lines) the state inference extension.
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Figure 13: Cross-inference results showing the distribution

of overlapping and unique behaviors discovered by stateful

fuzzers with and without state inference.

6.5 RQ4: Case Study on Cross-Inference

We implement state inference without optimizations as a hotplug-
gable component to introduce state-aware scheduling to two exist-
ing fuzzers: AFL++ (for the streaming parsers) and Nyx-Net (for
the network servers). The fuzzer and Tango share one physical
core throughout the campaign. Tango continuously checks for
new inputs in the fuzzer’s seed queue and applies state inference,
exporting its results for use by the fuzzer’s scheduler. Tango is
also configured to export any interesting inputs it discovers during
cross-testing, further reducing its effective overhead.

We measure the code coverage achieved by both the unmodified
and the augmented variants of the fuzzers, and we present those
in Fig. 12. Since code coverage alone cannot capture state informa-
tion, we leverage state inference as a performance metric, through a
process we call cross-inference. Seeds obtained from two competing
fuzzers are used to construct a snapshot tree, upon which state
inference is applied. We interpret the overlap and disjunction of
those snapshots in equivalence states as a measure of state coverage:
states where all snapshots of fuzzer B are subsumed by snapshots

of fuzzer A are considered unique to A, without loss of general-
ity. Otherwise, we consider them overlapping. The results of this
experiment are illustrated in Fig. 13.

The experiments yield an interesting result: despite both fuzzers
attaining similar code coverage, state inference revealed distinctions
in uncovered functionality, favoring the state-guided fuzzers. The
additional code covered by the unmodified fuzzers may not directly
translate to state coverage: “novel” paths may belong to the same
equivalence state. Through our evaluation, state-guided fuzzers
uncovered two new bugs: a heap buffer overflow in dcmtk and a
heap out-of-bounds read in yajl.

7 Discussion

State inference introduces a new metric for a fuzzer to optimize
its progress and performance on stateful systems. Consequently, it
raises the question of whether such a metric ultimately improves
the fuzzer’s ability to find bugs. Notably, we argue that optimizing
state coverage requires state-aware metrics, although not exclusively.

Code vs State coverage: Our case study on cross-inference
highlights a key observation: code coverage is not sufficient for
stateful exploration. Despite achieving higher code coverage, state-
unaware fuzzers discovered fewer behaviorally-unique states, as
seen in Fig. 13. This is further justified by our takeaway from Fig. 10,
that seeds in the queue of coverage-guided fuzzers are non-uniformly
distributed. Stateless programs can be seen as occupying only one
state, and code coverage enables in-depth exploration of that state.
Stateful programs introduce a new dimension for fuzzers. So, de-
spite state-unaware fuzzers achieving slightly higher code coverage,
cross-inference results highlight that state-aware exploration bet-
ter maximizes state coverage. A scheduler may incorporate other
metrics like code coverage to prioritize individual snapshots or
diversify exploration within a state.

Bug-finding advantage: In dcmtk, Tango uniquely detected
a clean-up bug, which was subsequently reported and fixed. To
trigger the bug, sending any message and waiting for clean-up is in-
sufficient; instead, it requires setting up a valid state, followed by a
disconnection. Tango’s “post-mortem tracking” was also pivotal for
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achieving this: it monitors decommissioned targets asynchronously
until they crash or exit, without impacting performance. In yajl, 4
of 5 Tango-AFL++ campaigns reliably triggered the bug, whereas
it was never triggered by the unmodified AFL++. In a later evalua-
tion with 20 campaigns, the bug was triggered in 14 Tango-AFL++
campaigns, but only in 4 campaigns w/o inference. This signifi-
cant difference underscores the benefit of state-aware scheduling.
Without ground-truth benchmarks, we cannot assess fuzzer perfor-
mance through new bugs alone, as the total bug count is unknown.
Instead, we report that fuzzers with state inference found a superset
of the bugs found by fuzzers without it. Tango provides the tools
necessary to perform state-aware fuzzing, and we believe it is an
important foundation for future research.

Exploration vs Exploitation: State inference offers a mecha-
nism for assigning a label to each snapshot. This enables balanced
exploration among states to avoid the starvation of less frequent
ones. A power schedule over states, like AFLFast [7], could then
incorporate the frequency of encountering a state to prioritize the
exploration of low-frequency behaviors. If state coverage is the
only metric being optimized, then equivalent snapshots would be
indistinguishable, and a uniform schedule within the same state
would be reasonable. However, a fuzzer can still schedule equivalent
snapshots non-uniformly based on code coverage and occasionally
prioritize weaker ones.

Misclassification: A false grouping may occur either due to
(i) insufficient cross-pollination; or (ii) state-insensitive feedback.
In case (i), snapshots may remain misclassified until the next round
of inference. If the new tests are sufficient to show a distinction
between the snapshots, then the misclassification will be rectified.
In case (ii), the fuzzer does not have sufficient information to make
a distinction, since the different behaviors do not yield different
observable effects. The choice of a state-sensitive feedback metric
is thus important. Through sufficient testing and state-sensitive
feedback, state inference always yields accurate groupings.

Comparision to LibAFL: Similar to Tango, LibAFL offers build-
ing blocks for custom fuzzers. However, LibAFL is designed for
coverage-guided greybox fuzzing but not for stateful fuzzing.Tango
is developed independently of and in parallel with LibAFL and was
built from the ground up with state as an anchor. Statefulness could
be refitted on LibAFL but with heavyweight modification to support
for target state as the context of its operations.

8 Related Work

State-aware fuzzing: AFLNet [24] was among the first to tackle
the problem of fuzzing network targets while allowing state to
accumulate. However, its requirement to manually annotate server
responses hindered adoption. Alternative techniques presented in
SGFuzz [5], NSFuzz [25], and StateAFL [20] addressed this issue
through more automated, albeit less precise techniques for state
extraction. Nonetheless, those works focused on extracting state,
not as a way to generate protocol-compliant inputs, but as a labeling
mechanism for discovered inputs. State inference in Tango makes
this mechanism more explicit by exploring functional overlaps.
LLM-guided fuzzing [19] has also shown its efficacy at targeting
network protocols, by providing machine-readable grammars and
high-quality seeds for covering states and transitions. Nonetheless,

it remains limited to the information available in its training data
and struggles to generalize to arbitrary or proprietary protocols.

Seed scheduling:While seed scheduling is a well-researched
problem in fuzzing [12, 29, 30], state inference is the first to address
it in the context of stateful systems. Existing techniques do not
account for persistent effects of executing seeds; they perform their
analysis retrospectively. In contrast, state inference runs a prospec-
tive analysis, finding overlaps in the traces of inputs executed.

Grammar inference: State inference overlaps with the disci-
plines of regular language grammars and automata theory. DFA
minimization [13] proposes a technique for collapsing a FMS into a
minimum number of states distinguishable by their outgoing tran-
sitions. The RPNI[22] and L* [2] algorithms present techniques for
passive and active learning of deterministic finite automata for reg-
ular languages. Recent work by Luo et al. [17] also tackles grammar
inference for network protocols, which is limited to protocols that
reveal stateful information in their responses to client messages.

Our approach differs from DFA inference by not assuming an
FSM model or that all inputs and responses are known or enumer-
able. It is not the goal of state inference to extract the state model of
the system, since that would require knowledge of which computa-
tional model is implemented, e.g., FSM or PDA. State inference in-
stead aims to discover hidden capabilities of each snapshot through
cross-pollination then finds groups of snapshots that share the
same capabilities through subsumption and colorization. Compared
to MACE [8] which first introduced blackbox state inference into
dynamic symbolic execution, Tango observes more fine-grained
feedback via instrumentation and has addressed unique challenges
when combining state inference with seed scheduling.

9 Conclusion

Research on stateful fuzzing continued where its stateless coun-
terpart left off. While much of the progress on the latter was of
great benefit to this field, it still managed to imprint methods and
assumptions that are otherwise not suited for stateful fuzzing. In
this paper, we re-assess the definition of states and how they fit
into the fuzzing stack. We present a method to identify semantic
behavior through the use of portable metrics, in a technique we dub
“State Inference”. In the process, we design and implement Tango,
a state-aware fuzzing framework for bootstrapping research in this
domain. Through evaluation, we identify a key observation: fuzzers
could potentially spend upwards of 86% of their time being tunnel-
visioned or duplicating their efforts. By applying our technique,
fuzzers can leverage state awareness for more optimal scheduling,
at a diminishing amortized cost. State inference is also applicable
in other stages of the fuzzing cycle, from seed minimization and
distillation, through unsupervised state extraction and determined
reproduction, to better-grounded performance evaluation.
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A Subsumption Operators

To formalize the approach, we propose the definitions:
𝑁□ (𝑢)

The □-neighborhood of 𝑢, where □ ∈ {+,−} represents out-
ward and inward directions, respectively.

𝑢 ⪯□ 𝑣 ⇐⇒ 𝑁□ (𝑢) ⊆ 𝑁□ (𝑣)
𝑢 is □-subsumed by 𝑣 .

𝑢 ≺□ 𝑣 ⇐⇒ (𝑢 ⪯□ 𝑣) ∧ (𝑣 ⪯̸□ 𝑢)
𝑢 is strictly □-subsumed by 𝑣 .

𝑢 ⪯ 𝑣 ⇐⇒ (𝑢 ⪯+ 𝑣) ∧ (𝑢 ⪯− 𝑣)
𝑢 is subsumed by 𝑣 .

𝑢 ≺ 𝑣 ⇐⇒ (𝑢 ⪯+ 𝑣) ∧ (𝑢 ≺□ 𝑣)
𝑢 is strictly subsumed by 𝑣 , for any □ ∈ {+,−}.

𝑢 ∼□ 𝑣 ⇐⇒ (𝑢 ⪯□ 𝑣) ∧ (𝑣 ⪯□ 𝑢)
𝑢 and 𝑣 are □-equivalent.

𝑢 ∼ 𝑣 ⇐⇒ (𝑢 ∼+ 𝑣) ∧ (𝑢 ∼− 𝑣)
𝑢 and 𝑣 are equivalent.

For each proposed operator 𝑜𝑝 , we can construct a set of vertices
𝑢 ∈ 𝑈 which satisfy 𝑢 𝑜𝑝 𝑣 as: 𝑜𝑝𝑣 = {𝑢 ∈ 𝑈 |𝑢 𝑜𝑝 𝑣}. Of particular
interest are the equivalence sets ∼𝑣 and strict subsumption sets ≺𝑣 .

To extract the sets of equivalence states from a capability matrix,
it suffices to construct the set of out-equivalence sets:

𝑆 = {∼+
𝑣 |𝑣 ∈ 𝐿}

Each element in 𝑆 represents an equivalence state, a set of snapshots
that overlap in behavior. To further reduce the number of states,
the fuzzer calculates the set of non-empty strict subsumption sets:

𝑆 = {≺𝑣≠ 𝜙 |𝑣 ∈ 𝐿}
Following that, any snapshot belonging to any set in 𝑆 can be safely
eliminated from all sets in 𝑆 , without loss of capabilities. Alter-
natively, to avoid inadvertently losing quality inputs, we choose
to include strictly subsumed snapshots in the equivalence states
of the subsuming nodes. This ensures that the fuzzer experiences
the same reduction in state counts while maintaining access to all
interesting snapshots.

B Time Spent on Cross-Pollination

During cross-pollination, for every batch of𝑚 new snapshots, given
𝑛 existing batches, the fuzzer must perform additional executions
on the order of O(𝑚 × 𝑛).

In particular, we define the following quantities:
Time-step 𝑡𝑘 : the point in time at which the 𝑘th application round

of state inference is performed.

https://github.com/wolfcw/libfaketime
https://github.com/wolfcw/libfaketime
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Snapshots 𝑛𝑘 = 𝑛𝑘−1 +𝑚 =𝑚𝑘

States 𝑠𝑘 = 𝑠𝑘−1 + 𝛼 𝑚 = 𝛼𝑚𝑘
average reduction ratio

Cross-tests 𝑐𝑘 = 𝑐𝑘−1 + 𝑚(2𝑛𝑘−1 +𝑚 − 1) = 𝑛2
𝑘
− 𝑛𝑘

additional executions per round

Since coverage growth is linear in exponential time [6], during
the 𝑘th step, at time 𝑡𝑘 , the total number of cross-tests performed is
O(log2 (𝑡𝑘 )). Meanwhile, the fuzzer generates and tests new inputs
in linear time, diminishing the ratio of time spent on state inference
as:

lim
𝑡→∞

log2 (𝑡)
𝑡

= 0

C Cost Reduced by State Broadcast

Since discovered capabilities are then broadcast to all snapshots
within a state, the number of cross-tests becomes:

𝑐𝑘 = 𝑐𝑘−1 +𝑚(𝑛𝑘−1 + 𝑠𝑘−1 +𝑚 − 1)

=𝑚𝑘

[
𝛼 + 1

2
𝑚(𝑘 + 1) − 𝛼𝑚 − 1

]
The approximate reduction in total cross-tests is then:

(1 − 𝛼)𝑘 − 1
2𝑘

;when
1
𝑚

≪ 1

D Built-in Extensions

Components in Tango are left open for customization, to accom-
modate for arbitrary stateful systems beyond network services. The
framework also encourages re-usability by providing components
with fixed interfaces, as well as a dynamic component discovery
subsystem to ensure that specialized co-dependent modules are
instantiated together. Through its supplementary profiling module,
Tango also enables the instrumentation of the fuzzer’s own func-
tions and variables, to improve the debuggability of the fuzzer’s
operations and to better attribute feature changes to improvements
in performance.

D.1 AsyncIO

Async I/O is a form of cooperative scheduling, where the application
specifies when control is returned to the scheduler. We built Tango
as an asynchronous application to enable graceful suspension of
the fuzzer and extend its compatibility to event-driven systems,
such as DOOM.

D.2 Hotpluggable Inference

We implemented state inference both as a strategy for use in Tango
and as a plug-in to third-party fuzzers such as AFL++ and Nyx-
Net. We slightly augment the scheduling routines of those fuzzers
to incorporate the inference results generated by Tango during a
fuzzing campaign and provide them with state-specific feedback.

D.3 Built-in Extensions

Tango ships with a set of complementary modules that enable it to
fuzz x86_64 processes on Linux-based systems, reload state through
replayed inputs, measure and classify SanitizerCoverage feedback,
communicate over standard file descriptors and network sockets,
train state-specific mutators and perform state inference.

D.4 ptrace-d processes

To ensure synchronicity between the fuzzer and the running pro-
cess, we use ptrace with seccomp filters to place catchpoints over
the relevant I/O syscalls where necessary, e.g., read, dup, close,
and poll, among others. Synchronization allows the target to re-
turn control to the fuzzer as soon as it becomes ready, instead of
busy-waiting and degrading throughput. Moreover, it guarantees
reproducibility of results: by encoding the relevant sequences of
syscalls into its saved inputs, the fuzzer can reliably reproduce states
and coverage measurements, leaving little for the OS to influence
when data is delivered to the target.

In addition, to increase fuzzer throughput and exploit the redun-
dancy of resets, Tango leverages ptrace to dynamically inject a
forkserver at runtime, just after setting up the communication chan-
nel in the target. This relieves the loader of the heavy initialization
phase of many network services.

D.5 Container isolation

Fuzzing is an embarrassingly parallel process, and it is commonly
employed by launching multiple concurrent campaigns on capable
machines. When fuzzing network services, this can introduce the
problem of overlapping socket bind addresses, since a server’s
configuration parameters are often identical across campaigns. We
therefore isolate each fuzzer instance in a Linux network namespace,
allowing them to communicate with their target without aliasing
other instances.

We also leverage mount namespaces to achieve filesystem iso-
lation. Some targets may store persistent state through local files,
influencing other instances of the target across resets. To avoid
that, we mount an overlay filesystem on top of a tmpfs mount
point for storing instance-local data. Then, upon reset, we clear
the upper filesystem of the overlay, effectively destroying any
persistent state left by the target.

D.6 Record-and-replay

Tango ships with a default loader which implements a record-and-
replay mechanism for loading snapshots. Under the reasonable
assumption that the target is deterministic, such a loader can re-
liably reproduce paths by relaunching or forking the target and
re-applying a saved input. More sophisticated snapshot-ing meth-
ods exist [27] which can be ported for use under Tango; however,
this remains out-of-scope of the current extensions.

D.7 SanitizerCoverage

In our study on state inference, we primarily model features as code
coverage profiles, classified into AFL-style bins. To achieve that,
Tango implements a CoverageTracker which sets up a shared
memory region for communicating coverage updates and extracting
feature sets. The tracker is equipped with C-based bindings for
performing the binning and hashing with minimal impact on the
fuzzer’s critical path.

D.8 socket+stdio

Tango includes a demonstrative set of channels, to communicate
with the target over network sockets, such as TCP and UDP, as well
as standard input. These channels extend the ptrace functionality
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to synchronize the state of the socket or file in the target with its
counterpart in the fuzzer. By capturing syscalls such as bind and
accept, we inject a forkserver at the latest stage in initializing the
target. This achieves around a 50x increase in fuzzing throughput
over the non-optimized implementation since socket setup is often
expensive, and otherwise, the fuzzer may only successfully connect
to the target by reattempting the operation until it no longer fails.

D.9 Adaptive mutators

We implement an adaptive model for applying havoc mutators that
balances exploration and exploitation using the Exp3 [4] algorithm
for distributing rewards and assigning probabilities. For each snap-
shot, we maintain a set of weights describing the probability that a
mutator is chosen in that state. Provided a comprehensive set of
mutators, this approach accommodates an evolving target by ad-
justing and applying the probabilities in selecting the next mutator,
based on how well each one performs in the state context.

E Case Study: DOOM

Tango is a framework for building state-aware fuzzers, and the
main witness of its merit would be using it to develop a state-
aware fuzzer for a complex stateful system. In the spirit of hacker
culture, we opted to answer the question “Can it run DOOM?” with
a resounding “Yes!”, using Tango.

E.1 Setup

To support DOOM, we extended Tango in the following aspect:
Driver: We implemented an X11Channel component which

sends keystroke events to a process’s window, through a public
Python library, python3-xlib.

Generator: We added Activate, Kill, Move, Reach, Rotate,
and Shoot instructions, extending the input base class. These gov-
ern how the player’s character interacts with its environment, and
are later used by the input generator and the exploration strategy
to maneuver around the map and overcome obstacles.

We limited the functionality of the input generator to selecting
a possible outgoing or incoming transition of the current state and
passing it on to the mutator, which mainly mutates the direction
and duration of movement, to explore the level. We also provided
it with two helper functions that can yield the correct sequence of
commands to follow a path or to aim and shoot at a moving target
by incorporating live feedback.

Tracker:We implemented state feedback as a shared-memory
struct populated by DOOM and accessed by Tango. The struct
contains all basic user properties such as location, weapons, ammo,
pickups, enemies in sight, and doors or switches within reach. Two
states are considered equivalent if they have the same player posi-
tion.We attached extended state variables to each state that describe
the pickups collected along the current path, and state attributes
describing the current location (e.g. if it is a slime pit or a secret
level). To avoid having a unique state for every single position on
the map, the level is divided into a grid of cells, representing the
granularity of feedback, as shown in Fig. 14a.

Loader:We extended the loader’s two main functions: restarting
the target and loading a state. Restarts are simple, as they’re only a
matter of terminating and relaunching the process. Loading a state

is slightly more complex: without a means of snapshotting, actions
must be replayed to reach a certain known location, given that the
state graph contains at least one path to it. However, a downside
of this approach is that nearby states (locations) may be reachable
through a bee-line movement, whereas the input generated and
discovered by the fuzzer to transition between these two states
may involve redundancies that impact fuzzer throughput. Another
downside is that if the current location and the target location are
close to each other, yet are far enough from the spawn location,
restarting the level from that location would be inefficient. The
player may simply need to move a few steps in the direction of
the target to reach it. Moreover, continuously restarting the target
breaks the immersion of the fuzzer “playing” the game, and it would
instead spend much of its time replaying actions from the start. To
avoid that, we implemented path-finding algorithms, based on the
state graph explored by the fuzzer, to move between two locations
using a sequence of Reach instructions. In essence, to load a state, a
path to it from the current state is calculated, and Reach instructions
are performed piece-wise along every transition in the path.

Strategy: Finally, we implemented a ZoomStrategy component,
to tie it all together, that schedules states based on a convex hull of
the explored locations, and prioritizes locations on the perimeter,
that are furthest from the start. In addition, the strategy implements
an event observer task that is responsible for reacting to urgent
events such as seeing an enemy or stepping in slime pits. By pre-
empting the fuzzer’s main loop, the strategy minimizes the reaction
time to increase the survivability of the player.

E.2 Results

With these extensions, Tango consistently manages to finish the
E1M1 level of DOOM, on difficulty 3, in 10 to 40 wall-clock minutes.
The main factor contributing to this variability is perimeter explo-
ration. As can be seen in Fig. 14b, in one recorded fuzzing session,
the fuzzer encountered a big undiscovered area on the left side of
the map, and dedicated a significant amount of time to exploring
it. It also managed to discover the path up the stairs to the higher
platform, where it found a level 1 armor pickup. In other runs, due
to the stochastic nature of the fuzzing process, it may miss that area
completely and continue exploring in the immediate direction of
the exit door, achieving a lower overall finish time in the process.

Having found the armor pickup, Tango maintains a record of it
in its later exploration stages. As can be seen in Fig. 14c, its path to
the finish line includes going up the stairs, picking up the armor
boost, and returning back on another path to the exit room.

Regardless of the overall finish time, once Tango finds the path
to the exit, it consistently manages to follow it in 3 to 4 in-game
minutes. While far from typical speed-runs for this level (which
are as low as 9 seconds), it remains a formidable achievement to
be able to explore the state space of a DOOM level and manage to
finish it in a sensible amount of time.
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(a) Grid view of the DOOMmap. (b) Heatmap of the visited cells during the first

10 minutes of fuzzing DOOM’s the E1M1 level.

(c) Heatmap of the visited cells after 30 minutes

of fuzzing.

Figure 14: The progress of Tango in playing DOOM. Red shading implies higher hit counts. Figure 14c shows that the fuzzer

had figured out a path to the finish and continues to repeat it to achieve the lowest completion time.
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Figure 15: The time of cross-testing per target.
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