
Towards Full-Lifecycle Security
Enforcement of Hypervisors

Qiang Liu, PostDoc

About Qiang Liu

2

2018.09 - 2023.09: PhD@ZJU with Prof. Yajin Zhou

2023.11 - current: PostDoc@EPFL with Prof. Mathias Payer

Research Topics System Security

IoT/Cloud -> AI Systems

Vulnerabilities, Offensive Research -> Defensive Research

Inference

Secure Collaborative Computing/Chain of Trust

3

Traditional IT System AI System

Firmware Rehosting
FirmGuide [ASE21]

ECMO [CCS21]

Hypervisor Security
HyperPill [SEC24]🏆

ViDeZZo [S&P23]
Truman [NDSS25]

Network Protocol Security
Tango [RAID24] 🏆

BGPFuzz [WIP]

Browser Security &
Interpreter Security

Reflector [AsiaCCS25]
Training &
Inference

RQ1: How to protect
training and deployment
from security threats?

RQ2: How to prevent
model misuse and
achieve confidential
inference?

RQ3: How to ensure the
integrity and
confidentiality of large
models?

A Full-Lifecycle Enforcement of System Security

4

Ahead-of-release
bug fixes

In-production
attack mitigation

Source Binary

Exploit

Exploitation as
motivation/evaluation

Knowledge
of Systems

Outline

Introduction to Hypervisors

Hypervisors: Ahead-of-Release Bug Fixes

Hypervisors: In-Production Attack Mitigation

Open Questions, Future Work, and Conclusion

5

A Predestined Journey to the Cloud

A friend of mine is building AI-powered services locally, …

6

Introduction to Hypervisors

With Cloud computing, AI services can be both scalable and
efficient. This is made possible by the hypervisor.

Hypervisors, Virtual Machines, and Isolation

7

Introduction to Hypervisors

Guest

Hardware

Hypervisor

Hardware

Guest
VM

Guest
VM

Hypervisor

 Hardware Pool

Guest VM

Remote
Hardware

A guest accesses
hardware directly

A guest appears to control
hardware upon request

with isolation

A guest scales out resources
like GPUs on demand for AI

workloads with isolation

smp40-m128G smp20-m64G smp40-m128G-gpu5

No Hypervisor With Hypervisor With Hardware Pool

Remote Resource C/S

Choose Your Favorite Hypervisor

8

Introduction to Hypervisors

I’m written
in Rust

I’m also written in
Rust and slim

I’m a macOS native
hypervisor and support
both x86_64 and arm64

I’m closed-source
and love MicrosoftI’m closed-source and

Type-I (baremental)

I'm Xen — old but
gold, and still

refusing to retire

I'm an open-source
superman; nothing can

beat me

Hypervisors Everywhere

9

Business & Infrastructure

- Cloud computing platforms,
smartphones, smart vehicles, base
station units (e.g., 5G/4G towers), routers
and gateways, industrial control systems

Security Applications

- Malware analysis, Honeypots, Intrusion
detection, Confidential computing

- An alternative to the kernel as the trusted
computing base (TCB)

Rehosting is the process of migrating firmware to a virtualized execution environment. We
contributed Linux kernel–based rehosting solutions in FirmGuide [ASE'21] and ECMO [CCS'21].

Introduction to Hypervisors

Attacker’s Gain

- VM escape
- Data exfiltration
- Privilege escalation
- Service disruption / DoS
- Stealth persistence
- Horizontal move

10

Introduction to Hypervisors

Attacker’s Gain

- VM escape
- Data exfiltration
- Privilege escalation
- Service disruption / DoS
- Stealth persistence
- Horizontal move

11

Introduction to Hypervisors

First time introduced in 2016
Pwn2Own’25 Virtualization Category

Oracle VirtualBox $40K
VMware Workstation $80K

VMware ESXi $150K
Microsoft Hyper-V $250K

QEMU Fuzzing

- 2015: VENOM VM Escape
- 2015-2017: Fuzzing initiatives

- 360 Marvel Team/Micro Trend
- 2019: QEMU Fuzzing@GSC’19

- Added to OSS-Fuzz in 2020
- 2021: QEMU Security Requirements

- Raising the bar to assign CVEs
- 2021-2025: We reported ~70 security bugs to QEMU

QEMU security has been improved a lot

12

Introduction to Hypervisors

Attacker’s Cost

Cost ↘

- Fuzzing tools
- More bug reports
- AI for cybersecurity

Now shifting to Linux/KVM and closed-source

- HyperPill
- First tool to analyze arbitrary x86/AArch64 and open-source/closed-source hypervisors across all

major attack-surfaces (i.e., PIO/MMIO/Hypercalls/DMA)
- Discord: https://discord.gg/dxdvHvrK8D
- More human/funding resources requested to commercialize it

13

Introduction to Hypervisors

https://discord.gg/dxdvHvrK8D

Outline

Introduction to Hypervisors

Hypervisors: Ahead-of-Release Bug Fixes

Hypervisors: In-Production Attack Mitigation

Open Questions, Future Work, and Conclusion

14

- Fuzzing: scalable to large code size and effective for bug discovery
- Threat model: the guest VM is not trusted; the attacker has the root privilege

Hypervisors: Ahead-of-Release Bug Fixes

15

Hypervisors: Ahead-of-Release Bug Fixes

Input
generation

OK

Bug!

Run target hypervisor
with generated Input

- Fuzzing: scalable to large code size and effective for bug discovery
- Threat model: the guest VM is not trusted; the attacker has the root privilege

Hypervisors: Ahead-of-Release Bug Fixes

16

Hypervisors: Ahead-of-Release Bug Fixes

Research Question Solution Key Results

Execution
Environment

How to drive arbitrary
hypervisors in a unified

framework?

A snapshot-based
Hypervisor Dock
(HyperPill [SEC24]🏆)

First tool to analyze arbitrary x86/AArch64
and open-source/closed-source hypervisors

across all major attack-surfaces (i.e.,
PIO/MMIO/Hypercalls/DMA)

Input
Generation

How to generate
high-quality inputs for

hypervisor testing?

Dependency-Aware
Input Generation

(ViDeZZo [SP23] Truman
[NDSS25])

Three kinds of dependencies for 29 virtual
devices (including virtio), covering five

categories, i.e., audio, storage, network,
display, and USB

Introduction to Hypervisors

Execute, Translate, and Trap-Emulate-Return

vcpu vram virtual device

Introduction to Hypervisors

Execute, Translate, and Trap-Emulate-Return

mov gva, %rax Code

vcpu vram virtual device

Introduction to Hypervisors

Execute, Translate, and Trap-Emulate-Return

19

mov gva, %rax

gpa

Code

vcpu

Data

vram virtual device

Not IO

Introduction to Hypervisors

Execute, Translate, and Trap-Emulate-Return

20

mov gva, %rax

gpa VM Exit e1000_reg0_mmio_read()
MMIO
range

Code

vcpu

Data

vram virtual device

VM Entry

Not IO

IO

Introduction to Hypervisors

Execute, Translate, and Trap-Emulate-Return

21

mov gva, %rax

gpa VM Exit e1000_reg0_mmio_read()
MMIO
range

DMA
pages

Code

vcpu

Data

vram virtual device

VM Entry

may access data via DMA
Not IO

IO

What do all the hypervisors have in common?

- Trap-Emulate-Return: execute most guest instructions natively on hardware but trap and emulate
“certain” instructions, allowing us to have a unified view of hypervisors

A snapshot-based Hypervisor Dock HyperPill [SEC24]🏆

22

Hypervisors: Ahead-of-Release Bug Fixes

Root
Mode

VMNon-Root
Mode

Ring3

Ring0

Ring3

Ring0

QEMU

Linux KVM

VMExit VMEntry

EL0

EL1

EL2

QEMU

Linux KVM

trap eret

VM

x86 virtualization ARM64 virtualization

What do all the hypervisors have in common?

- Trap-Emulate-Return: execute most guest instructions natively on hardware but trap and emulate
“certain” instructions, allowing us to have a unified view of hypervisors

A snapshot-based Hypervisor Dock HyperPill [SEC24]🏆

23

Hypervisors: Ahead-of-Release Bug Fixes

Root
Mode

VMNon-Root
Mode

Ring3

Ring0

Ring3

Ring0

QEMU

Linux KVM

VMExit VMEntry

EL0

EL1

EL2

QEMU

Linux KVM

trap eret

VM

x86 virtualization ARM64 virtualization

24

Hypervisor

VM Exit

Some instructions
from Guest VM

VM Entry

vmexit reason

A unified view of
hypervisors

A snapshot-based Hypervisor Dock HyperPill [SEC24]🏆

Hypervisors: Ahead-of-Release Bug Fixes

A unified view of hypervisors

- Trap (vmexit reason)
- Emulate (may access DMA pages)
- Return (can be captured)

Hypervisor: VM Exit driven, Iterative program

- 😃 Perfect fuzzing target

25

Hypervisor

VM Exit

Some instructions
from Guest VM

VM Entry

vmexit reason

A unified view of
hypervisors

A snapshot-based Hypervisor Dock HyperPill [SEC24]🏆

Hypervisors: Ahead-of-Release Bug Fixes

A unified view of hypervisors

- Trap (vmexit reason)
- Emulate (may access DMA pages)
- Return (can be captured)

Hypervisor: VM Exit driven, Iterative program

- 😃 Perfect fuzzing target

Snapshot of the system status enables fine-grained control

- Hypervisor code and data (vmexit reason)
- Guest memory for DMA

26

Hypervisor

VM Exit

Some instructions
from Guest VM

VM Entry

vmexit reason

A unified view of
hypervisors

A snapshot-based Hypervisor Dock HyperPill [SEC24]🏆

Hypervisors: Ahead-of-Release Bug Fixes

Four steps to drive a hypervisor to execute a sequence of VM exits

1. Modify the vmexit reason and its parameters
- VMCS (x86), ESR/FAR/HPFAR_EL2 (ARM)

2. Run the hypervisor to process this VM exit
- Provide DMA data on demand
- VM Entry: vmresume (x86), eret to EL1 (ARM)

3. Partially reset the snapshot and issue a next VM exit
4. Fully reset the snapshot

- All system registers, dirty pages

reset

27

Hypervisor

VM Exit

Some instructions
from Guest VM

VM Entry

vmexit reason

A unified view of
hypervisors

Dependency-Aware Input Generation ViDeZZo [SP23] Truman [NDSS25]

Hypervisors: Ahead-of-Release Bug Fixes

A subset of VM messages that a hypervisor can take

1. Port I/O (PIO)
- in/out (x86 only)

2. Memory-Mapped I/O (MMIO)
- mov (x86), ld/st (ARM)

3. Prefilled memory for DMA requests (no trap)
- mov (x86), ld/st (ARM)

reset

28

Hypervisor

VM Exit

Some instructions
from Guest VM

VM Entry

vmexit reason

A unified view of
hypervisors

Dependency-Aware Input Generation ViDeZZo [SP23] Truman [NDSS25]

Hypervisors: Ahead-of-Release Bug Fixes

A typical sequence of VM messages

- io_write()*rand()
- mem_write_for_dma()*rand()
- io_write()*1 reset

29

Hypervisor

VM Exit

Some instructions
from Guest VM

VM Entry

vmexit reason

A unified view of
hypervisors

Dependency-Aware Input Generation ViDeZZo [SP23] Truman [NDSS25]

Hypervisors: Ahead-of-Release Bug Fixes

A typical sequence of VM messages

- io_write()*rand() -> crash
- mem_write_for_dma()*rand()
- io_write()*1 -> crash reset

30

Dependency-Aware Input Generation ViDeZZo [SP23] Truman [NDSS25]

Hypervisors: Ahead-of-Release Bug Fixes

A typical sequence of VM messages

- io_write()*rand()
- mem_write_for_dma()*rand()
- io_write()*1

Three dependencies

- Intra-message dependency: A field in a message may be dependent on another field

vm message

len data

sizeof

31

Dependency-Aware Input Generation ViDeZZo [SP23] Truman [NDSS25]

Hypervisors: Ahead-of-Release Bug Fixes

A typical sequence of VM messages

- io_write()*rand()
- mem_write_for_dma()*rand()
- io_write()*1

Three dependencies

- Intra-message dependency: A field in a message may be dependent on another field
- Inter-message dependency: A message may depend on a previously issued message

vm message

len data

sizeof

vm message 1

vm message 2

a = 1; if (a) { }

32

Dependency-Aware Input Generation ViDeZZo [SP23] Truman [NDSS25]

Hypervisors: Ahead-of-Release Bug Fixes

A typical sequence of VM messages

- io_write()*rand()
- mem_write_for_dma()*rand()
- io_write()*1

Three dependencies

- Intra-message dependency: A field in a message may be dependent on another field
- Inter-message dependency: A message may depend on a previously issued message
- State dependency: A (bus-hidden) component follows a finite state machine

vm message

len data

sizeof

vm message 1

vm message 2

a = 1; if (a) { }

se
tup

transmit

cleanup

33

Dependency-Aware Input Generation ViDeZZo [SP23] Truman [NDSS25]

Hypervisors: Ahead-of-Release Bug Fixes

A typical sequence of VM messages

- io_write()*rand()
- mem_write_for_dma()*rand()
- io_write()*1

Three dependencies

- Intra-message dependency: A field in a message may be dependent on another field
- Inter-message dependency: A message may depend on a previously issued message
- State dependency: A (bus-hidden) component follows a finite state machine

Automatic extraction of three dependencies

- Knowledge is encoded in different formats
- From hypervisor code, hard
- From the Linux kernel drivers, easier

vm message

len data

sizeof

vm message 1

vm message 2

a = 1; if (a) { }

se
tup

transmit

cleanup

Linux kernel
drivers Hypervisor

Specification

- Fuzzing: scalable to large code size and effective for bug discovery
- Threat model: the guest VM is not trusted; the attacker has the root privilege
- Limitations: KVM not covered; lacking of sanitizers for closed-source hypervisors

Hypervisors: Ahead-of-Release Bug Fixes

34

Hypervisors: Ahead-of-Release Bug Fixes

Research Question Solution Key Results

Execution
Environment

How to drive arbitrary
hypervisors in a unified

framework?

A snapshot-based
Hypervisor Dock
(HyperPill [SEC24]🏆)

First tool to analyze arbitrary x86/AArch64
and open-source/closed-source hypervisors

across all major attack-surfaces (i.e.,
PIO/MMIO/Hypercalls/DMA)

Input
Generation

How to generate
high-quality inputs for

hypervisor testing?

Knowledge-based
Input Generation

(ViDeZZo [SP23] Truman
[NDSS25])

Three kinds of dependencies for 29 virtual
devices (including virtio), covering five

categories, i.e., audio, storage, network,
display, and USB

Outline

Introduction to Hypervisors

Hypervisors: Ahead-of-Release Bug Fixes

Hypervisors: In-Production Attack Mitigation

Open Questions, Future Work, and Conclusion

35

Hypervisors: In-Production Attack Mitigation

36

Hypervisors: In-Production Attack Mitigation

De-privileging Formal
Verification

Secure
Reimplementation

Exploit
Prevention

Adapt existing
hypervisor code to

enforce the principle
of least privilege

Adapt an existing
hypervisor for

verification against
security properties

Apply various
techniques to

strengthen
hypervisor security

Understand the
exploits, detect and

prevent them at
runtime

De-privileging

37

Hypervisors: In-Production Attack Mitigation

N
on

-r
oo

t
m

od
e

N
on

-r
oo

t
m

od
e

R
oo

t
m

od
e

R
oo

t
m

od
e

rin
g3

rin
g0

rin
g3

rin
g0

rin
g3

rin
g0

rin
g3

rin
g0

Dom0

Xen

VM0

Xen

VM1

per-VM

microvisor

VM0

per-VM

Nova [Eurosys10]

QEMU

Linux/KVM

VM0

QEMU/KVM

QEMU

Linux

VM0

DeHype [NDSS13]

KVM

Hyperlet

Retrofitting

De-privileging

38

Hypervisors: In-Production Attack Mitigation

N
on

-r
oo

t
m

od
e

N
on

-r
oo

t
m

od
e

R
oo

t
m

od
e

R
oo

t
m

od
e

rin
g3

rin
g0

rin
g3

rin
g0

rin
g3

rin
g0

rin
g3

rin
g0

Dom0

Xen

VM0

Xen

VM1

per-VM

microvisor

VM0

per-VM

Nova [Eurosys10]

CloudVisor

CloudVisor
[SOSP11]

Xen

VMDom
0

QEMU

Linux/KVM

VM0

QEMU/KVM

QEMU

Linux

VM0

DeHype [NDSS13]

KVM

Hyperlet

Retrofitting
Nested virtualization

De-privileging

39

Hypervisors: In-Production Attack Mitigation

N
on

-r
oo

t
m

od
e

N
on

-r
oo

t
m

od
e

R
oo

t
m

od
e

R
oo

t
m

od
e

rin
g3

rin
g0

rin
g3

rin
g0

rin
g3

rin
g0

rin
g3

rin
g0

Dom0

Xen

VM0

Xen

VM1

per-VM

microvisor

VM0

per-VM

Nova [Eurosys10]

Xen

VM0

Xoar [SOSP11]

Dom0

Secure Monitor

VM0

Slice-NShdSrv

Nexen [NDSS17]

QEMU

Linux/KVM

VM0

QEMU/KVM

QEMU

Linux

VM0

DeHype [NDSS13]

KVM

Hyperlet

QEMU

Linux

VM0

KVMHyperLock

Retrofitting
Nested virtualization

Compartmentalization

HyperLock
[Eurosys12]

CloudVisor

CloudVisor
[SOSP11]

Xen

VMDom
0

Challenging:
Software is not designed
to be compartmentalized

(Minoris [WIP])

Formal Verification SeKVM [S&P21,SOSP21]

40

Retrofitting enables formal verification

- seL4 (9K LoC): 👷👷👷👷👷👷👷👷👷👷 * 1 year
- CertiKOS (6.5K LoC): 👷👷👷 * 1 year
- SeKVM=retrofit(KVM)=KServ+KCore (3.8K LoC)

- 👷👷 * 1 year (real workload overhead: <10%)

Step 1: prove the top layer specifies the entire system

Step 2: prove noninterference at the top layer specification

A certain threat model enables the proof of noninterference assertion

- Each VM’s data confidentiality and integrity are protected from
another VM (concurrency is the key feature to be supported)

Hypervisors: In-Production Attack Mitigation

Spec
Code

C1@S0⊑S1

C2@S1⊑S2

C3@S2⊑S3

C4@S3⊑S4

Secure Reimplementation

41

Reimplement hypervisors

- in Rust, e.g., Amazon’s Firecracker, KVM-based, musl libc-based
- Started with a branch of Google Chrome’s crosvm
- Very lightweight and fast for multiple-tenant and function-based services
- A minimum design with 70K LoC of Rust

- No support of BIOS, Windows, legacy device or PCI, or VM migration
- Virtual devices: virtio-net/block, serial/keyboard, timers and interrupt controllers

- Jailer: a wrapper around Firecracker to sandbox it (e.g., chroot, pid/network namespaces,
seccomp with 24 whitelist syscalls etc.)

Typical techniques for mitigating attacks include the use of memory-safe programming languages,
minimal implementations, sandboxing

Hypervisors: In-Production Attack Mitigation

Secure Reimplementation

42

Reimplement hypervisors

- with dedicated hardware, e.g., Amazon’s Nitro System
- Nitro Hypervisor - A KVM-based, firmware-based, and deliberately minimized hypervisor
- Nitro Cards - Dedicated PCI devices + firmware, with single-root input/output virtualization

(SR-IOV) technology, implementing one virtual device with one virtual function
- Nitro Security Chip — Enabling a secure boot process for the overall system

Typical techniques for mitigating attacks include the use of memory-safe programming languages,
minimal implementations, sandboxing; decomposition of the software components, secure boot
(integrity measurement)

Hypervisors: In-Production Attack Mitigation

Secure Reimplementation

43

Reimplement hypervisors

- by exploring architectural features, e.g., Android’s pKVM
- pKVM enables stage 2 protection in host context
- pKVM requires IOMMU hardware for every DMA-capable device in the system
- Use shared bounce buffer for virtio’s data and its metadata
- Use crosvm that is written in Rust with a few virtual devices, virtio-blk, vhost-vsock,

virtio-pci, pl030 real time clock (RTC), and 16550a UART

Typical techniques for mitigating attacks include the use of memory-safe programming languages,
minimal implementations, sandboxing; decomposition of the software components, secure boot
(integrity measurement); architectural features; finally, it all comes down to trusting KVM!

Hypervisors: In-Production Attack Mitigation

VM Message Wall to Stop Hypervisor Exploits WIP

44

Step 1:
Understand

Step 2:
Construct primitives

Step 3:
Exploit Prevention

VM message
sequence

Arbitrary r/w
primitives VMI: Monitor

MMIO/DMA
access patternInformation leakage

primitives

Inject shellcode or
reuse existing code

Memory Safety:
Fine-grained isolation,

integrity, and
randomization

Hijack function pointer
(e.g., interrupt handler)

Control flow
primitives

Invoke the hijacked
function pointer

Outline

Introduction to Hypervisors

Hypervisors: Ahead-of-Release Bug Fixes

Hypervisors: In-Production Attack Mitigation

Open Questions, Future Work, and Conclusion

45

Open Questions

Linux/KVM

- How to generate quality input for all VM exits?
- How to detect and prevent race conditions in hypervisors?

Closed-source hypervisors

- How to detect memory corruptions in closed-source hypervisors?
- How to rehost arbitrary cell phone firmware?

Others

- How to detect logic errors in Rust-based hypervisors?
- How to automatically exploit QEMU/KVM bugs?
- How to test virtio backends?

46

From System Security to
AI System Security

47

Future Work: AI System Security

Data

Training

AI Compiler and Computing
Platforms

Model

Inference

(Ultra) Heterogeneous
Computing

Operating System and
Hypervisor

48

It works!!

Compliance and Collaboration -> Confidential Computing

Open/Online model weights -> Integrity and Confidentiality

AI Framework & AI Compilers/Interpreters & AI Hardware
Libraries -> Bug findings/Exploitations/Mitigations

Heterogeneous computing -> broken trust boundaries

- Resources scale-up (NVLink, UB-Mesh)
- Resources scale-out (InfiniBand/RoCE, UB-Mesh)
- GPU-centered computing & GPU security

- Nvidia Triton Inference Server
- Kernel drivers/Virtualization/Hardware

Future Work: AI System Security

Assets\Lifecycle Pre-training Fine-tuning Inference

AI Systems

Data -> MW Data+MW -> MW Prompts + MW -> Answers

AI-optimized software stack: DB/AI Compilers/AI Inference Server
Specialized hardware for acceleration: GPU/TPU

Scalability and distributed computing: xPU/Sharding/Sharing

Cloud Cloud or Local Cloud or Local/Embedded

Private Data
Shared to LLM via

Retrieval-Augmented
Generation (RAG)

Shared to LLM via Prompts

Traditional IT Systems Operated by LLM via Model
Context Protocol (MCP)

49

Future Work: Simplify Low-Level System Understanding

 SPEC

 CODE

 REVIEW

LLM + KG

REVIEW=Code review
SPEC=Specification
LLM=Large Language Model
KG=Knowledge Graph

A super model for encoding
structured and unstructured

knowledge of system software

No human can digest

- 14K pages of ARM SPEC
- 10GB reviews of QEMU
- 2M LoC of QEMU
- 29M LoC of Linux kernel
- …

Code-Survey (LLM for eBPF)
https://arxiv.org/abs/2410.01837

A super model brings

- Input grammar
- Test coverage insights
- Regression detection

- Crash impact
- Mitigation completeness

- Coding suggestions
- Natural language querying

- Debugging helper
- …

50

Future Work: A Formally Verified Limbo

51

Historical milestones

- Standalone computing (until ~2000)
- Personal computing / Web 2.0 Era (2000–2012)
- Large-scale computing & deep learning (2012-2018)
- Foundation models, AI breakthroughs (2018-current)
- Ubiquitous computing & heterogeneous security era (future)

- Devices of all forms: personal, enterprise, embedded
- Edge computing as a global, complex, and distributed fabric
- Requires unified software ecosystem and security frameworks

Security shift: from defense to resilience

- Success is no longer just about blocking attacks
- Key: fast recovery and business continuity post-incident
- Solution: a thin, scalable, and formally verified minimum recovery system

Conclusion and Q&A

Hypervisor enables Cloud computing by virtualizing and isolating system resources.

Hypervisors are critical and increasingly targeted, as advances in fuzzing have made vulnerabilities
easier and cheaper to discover. At the same time, their own security has steadily improved.

Our recent research projects—HyperPill, ViDeZZo, and Truman—enable fuzzing of arbitrary hypervisors
with high-quality inputs. However, further investment is needed to enhance their applications.

There are various ways to harden hypervisors, but deployment decisions must be cost-effective
considering the attacker’s return on investment (ROI) and the existing defences.

AI introduces not just productivity gains, but also new code, hardware, and usage paradigms—along
with fresh vulnerabilities and profit risks. Securing AI systems is more critical than ever!

Contact – Qiang Liu <cyruscyliu@gmail.com>, #opentoconnect

52

mailto:cyruscyliu@gmail.com

Backup Slides

53

Static Analysis

54

Inter-Message Dependency
CG/CFG Traversal

Intra-Message Dependency
Backward Dataflow Analysis

Static Analysis

55

State Dependency
Analyze the bus driver and the device driver

Explicit and transitive trust of the kernel and hypervisor

56

Trust

Kernel security
(supported by

hypervisor if any)

Security of
hypervisor itself

Trusted execution
environment (TEE)

H
K

H
K

H
K

H
K

Hypervisor
OS Kernel

In-trust domain
trusted execution

K
H

Host
App

Host
Kernel

Guest
App

Guest
Kernel

Hypervisor TEE

✅
✅

✅

✅

❌
❌

❌

❌

✅ Trusted

❌ Untrusted

❌

FirmGuide [ASE21]
ECMO [CCS21]

Explicit and transitive trust of the kernel and hypervisor

57

Trust

Kernel security
(supported by

hypervisor if any)

Security of
hypervisor itself

Trusted execution
environment (TEE)

H
K

H
K

H
K

H
K

Hypervisor
OS Kernel

In-trust domain
trusted execution

K
H

Host
App

Host
Kernel

Guest
App

Guest
Kernel

Hypervisor TEE

✅
✅

✅

✅

❌
❌

❌

❌

✅ Trusted

❌ Untrusted

❌

❌

ViDeZZo [SP23]
HyperPill [SEC24]
🏆
Truman [NDSS25]

FirmGuide [ASE21]
ECMO [CCS21]

Explicit and transitive trust of the kernel and hypervisor

58

Trust

Kernel security
(supported by

hypervisor if any)

Security of
hypervisor itself

Trusted execution
environment (TEE)

H
K

H
K

H
K

H
K

Hypervisor
OS Kernel

In-trust domain
trusted execution

K
H

Host
App

Host
Kernel

Guest
App

Guest
Kernel

Hypervisor TEE

✅
✅

✅

✅

❌
❌

❌

❌

✅ Trusted

❌ Untrusted

❌

ViDeZZo [SP23]
HyperPill [SEC24]
🏆
Truman [NDSS25]

FirmGuide [ASE21]
ECMO [CCS21]

Explicit and transitive trust of the kernel and hypervisor

59

Trust

Kernel security
(supported by

hypervisor if any)

Security of
hypervisor itself

Trusted execution
environment (TEE)

H
K

H
K

H
K

H
K

Hypervisor
OS Kernel

In-trust domain
trusted execution

K
H

Host
App

Host
Kernel

Guest
App

Guest
Kernel

Hypervisor TEE

✅
✅

✅

✅

❌
❌

❌

❌

✅ Trusted

❌ Untrusted

❌

❌

❌

ViDeZZo [SP23]
HyperPill [SEC24]
🏆
Truman [NDSS25]

FirmGuide [ASE21]
ECMO [CCS21]

Tango: Extracting Higher-Order Feedback through
State Inference (RAID’24 Best Paper Award)

60

Message Format

2020 2021 2022 2023 2024 2025 2026

AFLNet

StateAFL

SGFuzz ChatAFLNyxNet

Finite State Machine

NSFUZZ

Return
Codes

Memory
Snapshot

State
Variables COV!

Tango

How can we extract the states in a generic way?

Model-guided kernel execution FirmGuide [ASE21]

How to run a Linux kernel for x86? QEMU!

What about running Linux kernels used in ARM/MIPS-based IoT devices?

- Challenges: ARM/MIPS devices have fragmented peripherals
- Aim at a minimum best effort to boot with an interactive shell [FirmGuide ASE21]

61

ARM chip example: plxtech,nas782x Fidelity for booting
CPU Arm11MPCore ✅ High

Memory up to 512M ✅ High
Interrupt controller plxtech,nas782x-rps ❌ High

Time-related rps-timer, oscillator, sysclk, plla, pllb, stdclk, twdclk ❌ High
UART ns16550a ✅ High

Other peripherals gmacclk, pcie, watchdog, sata, nand, ethernet, ehci, leds ❌ Low

Linux kernel subsystem defines a state machine driven by driver behavior

A peripheral model = a state machine + driver behavior as transition conditions

Model-guided kernel execution FirmGuide [ASE21]

62

Interrupt
Subsystem

Driver 1 Driver 2

[TC1]

[TC3] [TC2]

Driver 1: { D1TC1, D1TC2, D1TC3 }
Driver 2: { D2TC1, D2TC2, D2TC3 }

Model-guided kernel execution FirmGuide [ASE21]

63

It starts

State 1

Our peripheral model is at state 1 and have monitored the behavior of the Linux kernel, specifically by
logging MMIO rw sequences (MMIO R/W Seqs)

Model-guided kernel execution FirmGuide [ASE21]

64

State 1

MMIO R/W

Our peripheral model goes to state 2 if the MMIO R/W Seq matches D1TC1

Model-guided kernel execution FirmGuide [ASE21]

65

State 2

MMIO R/W

Linux kernel runs

Model-guided kernel execution FirmGuide [ASE21]

66

State 2

MMIO R/W MMIO R/W

Our peripheral model is at state 2 and have monitored another MMIO R/W Seq

Model-guided kernel execution FirmGuide [ASE21]

67

State 2

MMIO R/W MMIO R/W

Our peripheral model goes to state 3 with a value back

Model-guided kernel execution FirmGuide [ASE21]

68

State 3

MIMO R/W MIMO R/W

Until we get an interactive shell

Model-guided kernel execution FirmGuide [ASE21]

69

Booted

MIMO R/W MIMO R/W MIMO R/W

Techniques

- Use KLEE to extract MMIO R/W Seqs from Linux kernel drivers
- Use a template render to composite a QEMU machine

Results

- We first enabled the fuzzing of embedded Linux kernels for 26 SoCs
- We managed to develop exploits, which can never be easily done without successful rehosting.
- We showed that backporting kernel patches for IoT devices was not yet timely.

Model-guided kernel execution FirmGuide [ASE21]

70

